———

Adventure Il — an epic game |
for non-disc systems

| ADVENTURE is a very popular and addic-
| live compuler pame, run on many large
systems throughout the world, However,
despite its popularity among those with
access Lo large machines, it does not seem
1o have appeared on many microcom-
puters. The reasons for that are easy to
see; Adventure is complex, large, requir-
ing disc back-up and difficult to modify to
produce new games,

More general

Consideration of those problems led o
the design and implementation of the
simpler and maore gencral Adventure
program described in this article, suitable
for most systems without the need for
disc-backing store,

Adventure is a computerised version of
the game Dungeons and Dragons, both of
which are cnormously popular, In
Dungeons and Dragons a player is
assigned the role of dungeon masier,
devising the dungeons which the ocher
players explore in an attempl 1o acquire
the treasures hidden there, often after
having fought 1heir way past monsiers of
various kinds.

Each player announces his action to the
dungecon master who then tells him of the
outcome, usually after spinning various
dice to generate a random element.

Adventure, run on PDP-11 systems
everywhere, 15 similar 1o Dungeons and
Drragons except that the dungeons are
devised by the original programmer and
the computer then assumes the role of
dungeon master.

Interactive technique

The computer describes the situation to
the user who replies with the action he has
decided to take. The computer, in turn,
informs bim of the result. This
plaverfcomputer interaction is best
illustrated by a sample run of the program
— the user response is im capital letters.

Somewhere nearby is Colossal Cave, where
others have found fortwnes in treasuce and
gold, though it is rumoured than some who
enler are never seen again, Magic is said o
work inthe cave. [will be vour eves and hands.
Direct me with commands of one of wo
wiards.

You are standing at the end of a road before
a small brick building. Around you is a forest.
A small stream flows ol of the building and
down a gully,

ENTER RUILDING

¥ou are inside a building. A well house for a
large spring.

There are some keys on the ground here.
There is a shiny hrass lamp nearby, There s

&8

food here, There is a bortle of water here,
GET KEYS

Ok

GET LAMP

OK

RUB LAMP

Rubbing an electric lamp is not pariiculaely
rewarding. Anyway, nothing exciling happens.
EXIT

You're at the end of the road again,

GO SOUTH

You are in a valley in the forest beside a
siream wWmbling along a rocky bed.
GO SOUTH

You are in a 20-M. depression floored with
bare dict. Set imo the dint is a strong steg] grae
mounted in conerete. The grate is locked
UNLOCK GRATE

The grate is unlocked.

Once having opened the grate, for
which he must have the keys, the player
then has access to Colossal Cave where
there are problems (o solve and treasures
to gather. However, il he does not have
the keys, there is mo way that the grate can
be opencd. In fact, it may take him a

by Ken Reed

while 1o find the entrance as it is all oo
easy to become lost in the forest.

As you can sec from ihe example,
plaving Adventure is rather like reading a
novel, with one important difference.
Instead of following the story passively,
the reader is involved actively, deciding
what is the best action (o take in 2 given
situation, often having to think very care-
fully as the wrong decision may lead to
death.

That afinity with a novel is Adventure’s
main disadvamtage. Once all the problems
have been solved, which may take several
weeks, interest wanes and another
Adventure is required,

The original version of Adventure, pro-
grammed by Will Crowther ar Stanford
Research Institwie, is coded in Fortran,
requires &4Kbytes of memory, disc back-
up and is very difficult 10 modify to
generate new games as many of its features
are buried deep within the program code.
That cxplains the current shortage of
Adventures.

A better solution would be to have a
general Adventure program driven by a
separate database allowing new games Lo
be generated withowt baving to overcome
the programming complexities every time.
In fact, that approach was used by Scou
Adams who has now produced a number
of excellent adventures for some of the
more popular systems such as the TRS-80
and Sorcerer.

We present an Adventure-creating program for almost any system.

The program described here carries this
concept one step further, Instead of one
person producing adventures for a limited

range of systems the idea is to describe a
program which can be implemented on
almost any system and driven by an

entirely separate and machine-
independent database. That allows
owners of the program 1o write

adventures in a simple form and swap
games with someone who may have an
entirely different processor.

Two segments

As mentioned earlier, Adventure 11 is
split into two pards. The first is the pro-
gram and the second the driving database.
Before deseribing the program, it is
worthwhile to look at the gemeral
structure of the database which bas four
main sections:

|. The wecabulary of words recogmised in the
game.

1. The objects that sy ke manipulated.

1. The places thar may b visitgd,

4. The actions perfarmed by specific words,

All that is required to produce the data-
base, and the program is an assembler
and examples of various (able entries are
shown for a Z-B0-type assembler.

The vocabulary 15 beld as the first four
letters of a word followed by an ideni-
ifwing code. That permits the program to
reduce words 1o simple numbers which are
much easicr to manipulate. It also allows
different words to have the same code and
hence the same meaning.

Identitying code

For example, the words “DESCEND"
and "DOWN"", having roughly the same
meaning, may be assigned the same ident-
ifying code. Hence the commands from
the user "DOWN STEPS"™ and
“DESCEMD STEPS" may be handled by
the same function. The table may be
entared thus:
VOCAR: DEFM "MORT : Word "' NORTH'™

LDEFB 1 : Mdentifving code
i I L4}

DEFM EAST'

DEFE 2 : EAST has code

||2-I

DEFM is the instruction o define an
ASCIN string and DEFB is to define a byte,
The table has the name "VOCAB™ amd
terminated by a byte of OFFH (235 or
—1). The words for movement —
narth,south,ctc. — must have codes in the
range 1 to 12 as the program prints the
message — | cannot 2o in that direction —
if it cannot find anyihing 1o do with words

PRACTICAL COMPUTIMNG August 1950

in that range. Other unmatched words
generate the simpler response: | can't.

Objects are anything which may be
moved from one place to another and/or
transformed from one thing to another, A
lamp, for example, may be carried with
the player and it may be transformed from
a“LIT LAMP" to an "“UNLIT LAMP*®
and, of course, back again.

Each object has an entry in cach of two
tables: the object location table which
records the current position of the object
and the object description table which
contains the text wsed to deseribe the
object.

The cureent location table is named
"OBJLOC" and the deseriptive text table
“OBITXT". OBJLO is terminated by a
byte of OFFH, OBJTXT needs na termin-
ation.

OBILOC: DEFBE 3,0 :Object Dat
loeation 3
DEFE 50 s Object 1at
location 5

: Simalary for

ather objects

OBITXT: DEFW MO + Address of tex
for ebject 0
DEFW M1 y Address of text
for ahject |
MD: DEFM ‘A lietle : Description af
axe' object
DEFBE 8OH : String termin-
atar
Mi: DEFM ‘A bunch
of keys®
DEFE 30H

Mote that the object position inform-
ation is two bytes to allow it to be at a
location — first byie is 0-225 — ar in some
special place, such as carried by the player
— second byte is used. Also, the object
deseription table OBITXT contains the
address of the actual description for each
abject.

Simple indexing

That allows simple indexing by object
number into the table to locate the real
test, I it were not done that way, the
table would be much harder to use as each
eniry would be of an unknown lengih.
The byte 80H is used to terminate the
string.

The locations are the places that the
player may visit. They may be rooms,
caves or anything desired by the
Adventure writer. Each location has an
enlry in two tables: The description of the
location and the list of directions the
player may go from there. The location
deseriptions are held in a table named
LOCTXT and the possible movements in
MOVEMT. Both of those tables consist
of pointers to the actual data as described
for the object descriptions above.

MOVEMT: DEFW DO ; Pointer o loc-
ation () moves
DEFW 1 i Pointer to loc-
aticn 1 moves
s ete. Tor rest of
locations

The following example movement
shows an entry that says that word O takes
feordnued on next page}

FRACTICAL COMPUTING August 1980

Adventure JJ =

I
I
i
!
i
q

ﬂ_

—

feamtinwed from previous page)

us to location 1 and word 3 will take us to

| location 5. Mote that a —1 terminates the

list.

Do DEFB 0,.1,3.5.-1

LOCTXT: DEFW LD 1 Pointer 1o des-

criptions

DEFW LI :

LO: DEFM ‘lam inan empty room’
DEFB EOH

L1: DEFM ‘Iam by a stream’
DEFB EOH

The action table is the section of the
database interpreted or executed by the
main program. It consists of words, con-
ditions and actions performed. If there is
an entry in the table for the words entered
by the user and the conditions specified

| are met, the actions are performed.

Action table

For example, if the command *“"GET
LAMP' has a corresponding eniry in the

| action table and the condition that the
| lamp must be in sight are met, the data-

base will instruct the program to mark the
location of the lamp as carried. There is a
similar table scanned before the plaver’s
turn to see if the computer wants anything
10 happen.

For example, he may be in the same
room as a Yampire without a crucifix so
the computer may make the Vampire
attack. The user action table is named
EVENT and the computer's table
STATUS. Both have the same format:

EYENT: DEFB 0,1 i Words Dand |
DEFW CO0 ; Pointer (o
conditions
DEFW AD : Painter to
actions
DEFB 3,-1 : Only word 3
required
DEFW I : Pointers
DEFW Al .
on: DEFB 0,1,1,2,-1 5 Must be at
Ioeation 1 (0,1}
 Ojbect 2 must
be here (1,2)
Al DEFE 35.3,-1 ; Print messagg 3

The lists of actions and conditions are
terminated by a byte of OFFH (-1). Note
that the examples are only very small
extracts from a real table. A full-size data-
base may have up to 255 locations and any
number of entries in the event and object
tables.

Pseudo-code
The requirement that the program be as

| small as possible means that it must be

entered as an assembler program.
However, a5 we want the program des-
cribed to be suitable for any system, it

leads to a slight problem over how we

represent it.
Assembly listings for every processor

| would occupy far more space than the

———

magazine can provide and flowcharts
would not really describe the action of the
program at the level of detail we want. For
those reasons, the program is represented
in pseudo-code.

70

For those not familiar with the term,
pseudo-code {5 2 non-existent language or
shorthand representation of a program
often used by programmers for detailed
design when the actual target language 15
not yet known. Pseudo-code provides far
more detail than flowcharts and is, in fact,
detailed instructions for the actual coding
of the program.

Although the listing should be more or
less self-explanatory, it is worth mention-
ing two conventions used. IF a variable is
preceded by a ‘@', it means that the
variable is used as a pointer to the data.
For example, if “HL'" contains the value

| 100 and we say “A=@HL", “A" is

loaded with the contents of memory
location 100.

A similar convention is used to identify
the address of a variable except the *#"
character is used — also used by the IF
statement for not equal to, For example,
if we say “HL=#0BILOC”, it means
that the variable FIL is loaded with the
address of OBJLOC and not the contents.

Variables used are defined as either
EYTE, 8-bit, or WORD, 16-bit, and the
contents are assumed to be set to zero
unless & value is included between two
‘P's. For example, to define two B-bit
variables in memory, one set to zero and
the other to 3 we use:

BYTE VARA VARB/3/
A memory block is reserved by:
BYTE VARC/<T>/

which means reserve seven bytes of
memory starting at label “YARC™.

Program arrays

That leads (o the implementation of
arrays used by the program. All references
to arrays mean an offset to the base label
of a memory area. For example, VARC(3)
simply means the address found by adding
three to the value of label VARC.

Thus YARC(D) is exactly equivalent to
VARC. Eemember that words occupy two
bytes, so, if VARC was a word array,
VARC(Y) would actually be addressing
VARC + 6 and also VARC + 7 for the top
bvie,

Knowing this, you should now be able
to produce a version of the program for
your particular system by working
through the listing and penerating the
appropriate assembly code for your
machine. If you have access to & medium-
level language, such as PL/M for
example, that is, of course, equally
acceptahle.

The pseudo-code program shown here
has in fact been compiled by a specially-
writlen compiler to ensure that it is sound.

Let ws work through the program
considering what makes it tick and
explaining the meaning of the pseudo-
code representation.

Referring to the listing, we can see that
the first section is simply the definition of
items not within this listing, that is the
items marked “GLOBAL". Four sub-

routines not described here are called, but
as these are relatively simple entities they
should present no problem in coding.

The first subroutine required is called
“EREPLY' and it is simply a routine to
repd a respose from the user and return a
value of one if it was a **Y"", and a value
of zero if it was a "N'". The routine
should check that either a **Y™ ora *'N"'
was entered and prompi “PLEASE
AMNSWER YES OR MO for any other
reply.

The second routine is named SMESS
and is the routine used (o print messages
on the conseole. It must take the
ADDRESS of a message as a paramefer
and print all the bytes found there until 2
byte with the most significant bit set is
encountered. The routine used also had
the additional feature that it printed 2
return/line feed if it was called with an
address of zero. |

The next routine, FLINE, is the
opposite of SMESS; it obtains a line from
the user and passes back the address of the
stored text.

Random numbers

Finally, SRAND is a routine which
returns & random number in the range O1e |
100. Many people shudder at the thought |
of writing random-number generators but |
as we want only one number at a time and
not a series, that is not as difficult as you
may think.

It can be done by reading the refresh
register if you have a Z-80 svstem, or if
your kevboard is software-controlled, you
may increment a counter in the keyboard |
— wait loop and use that value as the |
random number. If you want a more |
elegant solution, the random numbers
used in the prototype program were
generated using the algorithm:

[Generated number] =1 l:-:llLasl gencrated |
number] + 999 MOD 101 although this does
require 16-bit multiply and divide.

The next group of globals refer to the
addresses of the various tables in the data- |
base,

Variable definition

The last part of the section is the
definition of the variables used by the|
program. Although some of them are
defined as words, the only items which
must be 16-bit are ““Here' as it i3
compared to a 16-bit abjeet location and
the three “pointers’ BC,DE and HL &
they hold addresses used to point to the |
actual data required.

A further point is that some itéms ant
used for temporary storage only and may
be replaced by the processor registers if
wou desire. The only variables that must
be in memory are Here, the current
location and User, the variables the data
base may access. If you run out of
registers, remember they may be saved on
the stack while a register is used for
something else.

Proceeding to the code, we can see tha
the program begins at label **Start" which

PRACTICAL COMPUTIMG August |76

simply sets the first location to zero. The
code beginning at **Desc® describes the
current location by printing the descrip-
tion found adding the contents of ‘HERE"
to the base address LOCTXT and using
the pointer there.

The current location will, of course,
change as the game progresses. A small
piece of code checks to see if the data-
base has set user flag zero and il so, we are
in dark locations and object zero must be
present (a lamp) to obtain the location
description. Otherwise the message
“Everything is dark. | cannot see™ is

displayed.

Time limits

Two of the user flags are also decre-
mented automatically if the database has
¢t them non-zero. That allows time limits
10 be implemented for things like being in
dark locations. A further flag is decre-
mented a little later once per plavers turn.

The code then goes on to scan through
the object location table **Objloc’ and if
any objects position is the same as the
current position “Here", the object
description is printed.

Mext, the program looks guickly as the
status table which is effectively the
computer’s turn at the game. However, as
the same mechanism which decodes the
plaver’s command is wsed, we will con-
sider it later. That function, when
completed, returns to the label ““PROC™.

The routine that obtains a line from the
user is called (SLINE) and the address of
the entered text obtained. The routine
uwied returned the address on the top of
the stack and the instruction
“HL = @ 5P finds that address.

Line reduction

We then pick the first four letters of the
first word and look it up in the vocab-
ulary table. If the word is found, we do
ihe same to the second word. If a partie-
ular word docs not have an entry in the
vocabulary table, we discard it and try the
next,

That reduction of the line allows
complex sentences like “TURN ON THE
LAMP™ to be reduced to simpler entitics
like *"ON LAMP", provided the words
TURM and THE are not in the
vocabulary, Hence it is important to
consider carefully which words are not in
the vorabulary as well as which ones are.

If none of the entered words is found
in the vocabulary, the message *“I don't
understand'’ is printed and we go and
obtain another line from the player,

After we have converted the user's
command intoe one or two single-byte
codes, we take the first code and see if it is
one of the words which cause movement
at the location. If it is, the current
position (HERE) is updated and we return
o label “MOVED" to describe the new
place. If it is not, we proceed to examine
the main event table to see if there is an
eniry there.

PRACTICAL COMPUTING August | 980

If the first word code ““W1' matches
the first byte of an entry and **Wwa"
malches the second byte, we proceed to
extract the conditions and test them. I all
the conditions are satisfied, we extract the
list of actions and execute them.

If all the conditions do not match or the
twa-word codes do not match, we try the
next entry in the table. That is repeated
until an explicit command to leave the
table is given or the table is exhausted.

The action or condition is decoded by
using it as an index into a list of addresses
for the function we want and simply
moving the address to the program
counter (FC). It can wsually be done on
most machines by pushing the address on
to the stack and executing a return from
subroutine instruction.

The comments in the program listing
explain the operation in greater detail and
indicate what actions and conditions are
available.

Looking at some examples of a data-
base should further clarify the operation
of the program. To make the databage
more readable, the example extracts
shown below were produced using a
macro assembler and calling various
macros to make the entries in the
appropriate table.

Vocabulary details

The following is a small section of the
vocabulary from the author's test data-
base, Note how abbreviations are also
entered for words and given the same
code. Hence “E' is equivalent to
FEAST".

YVOCAR:
TABLE<SOUT> .1
TABLE <5> |

TABLE <EAST> 2
TABLE <E> ir]

TABLE<WEST> .3
TABLE <W2 b3

TABLE<NE> 4
TABLE <NW> 5
TABLE <SE> 6
TABLE <5W> 7

TABLE <UP> o
TABLE <L B
TABLE <DOWN> 9
TABLE < D> 2

TABLE <NORT> ,12
TABLE <M A2

TABLE <END> A3
TABLE <5TOP> |13
TABLE <QUIT> ,13
TABLE <ABOR> .13

In the objects shown here, note how
items which can change state are two
objects although only one of the pair may
exist at any given time.
OBJECTD, <<0,8>, <A lit lamp >
OBJECT 1, <<87,0>, < An old gil lamp >

OBRJECT 2, <55,0%, < A small cloth bag>

OBRJECT 3, <55A,0%> < Aboutle of holy water
OBIECT 4, <0,8>, <Anempty bottle>
QBJECT 5, <0,8>, < A maich >

OBJECT 6, <0,8>, €A spent match >

Adventure II

The first byte of the location inform-
ation is used to mark the location of the
object. If the second byte is non-zero, the
object is at one of the special places.
These are:

2 — Object is carried [512]
4 — Obyect is worn [1024]
& — Object dacs not exist (yet) [2048]
The value in **[]"" indicates the number

obtained when the two bytes are econ- |

sidered as a single 16-bit word.

Movement words

The first two locations of the example
illustrate how movement can be accom-
plished by any words and not just
directions. For example, the word
“"HELP' moves the player to location Sl
which simply contains instructions for
him. The word “BEGIN" is used to start
the game.

LOC 50, <HELP,51, BEQI 52>
TXT < Welcome to Adventure! =

TXT <If you know what to do type BEGIN
otherwise type HELP >

LOC 81, <BEGL 52>

TXT <1 have managed 1o get myself lost in the
forest on my >

TXT <quest for the seven golden keys of
Waydor and I don't know >

TXT <what to do next., Soitis up to you to
help me.>

THET <>

TXT < Give me your instructions and 1 will
obey. For example, >

TXT <if you want me to go to the narth, [ype
"GO NORTH™, il >

TAT <we should come across some keys and
you want me to get >

TXT <them, type “GET THE KEYS". >

TXT < Some ather words that you may find
useful are: >

TXT <INVEMTORY to find out what I'm
clrryving =

TXT <QUIT to give up., >

TXT <>

TXT <Type “BEGIN' when you are ready to
to start, >

LOCS2, <554, PATH, 54>

TXT <Iamina¢learing in a very dense
forest. >

TXT < There is a path leading off ta the
south, >

LOC S5, <N,52,E,55, W, 56>

TXT<Iamata"T" junction with exits to the
narth, west and east >

LOC 55, <W 54, EXIT,54.E,55A, ALTA,
554 >

TXT <1 am amongst the ruins of a church.
At the far end there >

TXT <are the remains of an altar. The exit is
ta the west. =

LOC 554, <EXIT,55,W.55>
TXT <1"m beside the altar, >

LOC 56, <E 54, IN,57, CRYP,57>
TXT < I'm outside the entrance of a erypl. >

LOC 57, <EXIT.56, DOOR,S6 >

TXT <I'min a vaulted chamber. Thick
cabwebs hide the celling.

TXT < There is an empty coffin in the corner
and a passage leading >

THET <off inte darkness to the north, >

LOCEE, <D,59, STEP,59>
feantinced on page 73)

71

—

Adventure II*

{continued from page 71)

TXT <I’m at the top of a steep flight of steps.
Ican see a>
TXT <dim light to the south. >

The event table is the real heart of the
database as it contains the actions per-
formed by each command from the user.
This section also contains the various
messages which may appear under data-
base control.

EVT2 <N ,-1> <0,57,-1> <9,0,8,
58,6>
EVT3 <8 ,-1 > <0,88,-1> <10,0,
8,57,6>
EVT4 <GET,LAMP> <1,0,-1> <2,0,
13>
EVT5 <GET,LAMP> <I,1,-1> <2,1,
13>
EVT6 <DROP,LAMP> <1,0,-1> <3,0,
13>
EVT7 <DROP,LAMP> <1,1,-1> <3,1,
13>
EVT8 <LIGH,LAMP> <l,l1,1,5, <I1,0,
- 11,5,
5,11,18,
-1>
EVT9 <OFF ,LAMP>

<1,0,-1> <I11,0,
13>

EVT 10 <LIGH,LAMP> <1,1,-1> <5,14,

-1>

Status:

EVT A <-1,-1> <7,5,5,0,2,10,-1>
<5,7,15,2,8,9,5, -1>

EVTB <-1,-1> <6,2,1, <5,8,
-1> 12>

EVTC <-1,-1> <5,2,-1> <55,

-1>
EVTZ <-1,-1> -1 7

MSG 5, <1 feel sick and dizzy! >

MSG 7, <Some one has lept out of the shadows
and BITTEN MY NECK!!!! >

TXT <He vanished as suddenly as he
appeared! >

MSG 8, <Everythmg is getting dark! I Think
I'mdy ..

MSG 11, <1 have lit the lamp with the match
which has now burned out >

MSG 14, <1 don’t have anything to light it
with, >

It is worthwhile examining some of the
entries in the table in detail to show just
what can be accomplished in the database.
For example, in the location S7 shown,
there is a passage leading north, but there

is no entry in the movement list for it.

That is because rooms past there are
dark and we want to tell the program. So
let us look at entry 2. The word codes
which must match are “N’’ (north) and
anything will do for the second. There is a
single condition, namely that he must be
at location S7. If that is so, actions are
performed which are : 9,0 — Set flag zero;
8,58 — Go to location S8; 6 — Describe
the location and obtain another command
from the player.

Updated positions

The lamp, being two objects, the lit
lamp and the unlit lamp, has two entries
for the GET and DROP commands. Each
entry determines which of the objects is
here and updates the position of the
appropriate one. To light the lamp, the
conditions are that the unlit lamp and the
unused match must be present. If that is
so, the unlit lamp is destroyed, the lit
lamp created and the match is trans-
formed to the spent match.

An informative message is also printed.
The final command (18) aborts the
scanning of the table as a little later in the
table, there is an entry for LIGHT LAMP
when no match is present — which gives
message 14 — and we do not want to fall
through to it if we have already lit the
lamp.

The table is terminated by a word code
of zero. Note that in the example the
words GET, DROP etc., are shown but in
areal table the word code is used.

The entries in the STATUS table show
an example of how a “‘wandering
monster’”’ may be implemented. The
conditions are: Flag 5 must be zero; he
must be in ‘‘dark’ locations and 10
percent probability will generate the
actions. The actions are: print message 7;
store 8 in flag 2 — counted-down by the
program — and set flag 5 to prevent more
vampires.

Message printed

EVT B checks if flag 2 has reached 1
and if so, says we are dead and EVT C
prints message 5 if flag 2 is non-zero.
Hence we have a 10 percent probability of
being bitten by a vampire. We then receive
the message ‘I feel sick and dizzy’ for

seven turns before we die. In the authors’
database, drinking some holy water clears
flag 2 and hence prevents EVT B from
executing so we survive the bite.

Now that we have described the
operation completely perhaps some ideas
on implementing it and swapping data-
bases may be useful. In terms of hard-
ware, all that is required is about 16K
bytes of memory for a decent adventure.

The program should fit in less than 4K
but you will find that the descriptive text,
particularly for locations, will eat
memory.

In terms of software, all you need are
an editor and an assembler. However, if
you have access to a disc-based system, all
the better. Perhaps the best way to go
about it is through your local computer
club working on the program as a team
and generating your own adventures.

As the database is pure data, any data-
base will run on any machine — providing
there is enough memory. However, the
program still needs to know the position
of the tables in memory.

Assembled listing

The simplest way to do this is to
assemble the program to suit the data-
base. Say we have Fred Smith’s database
which occupies memory from 0 to 2000
Hex and he has provided details of the

| start of each table. We assemble the pro-

gram so that it starts above the database
and we also define the table addresses by
adding a small header to the program of
the form:

ORG 2000H ;Start of program
LOCTXT EQU 200H ;Define table address
VOCAB EQU 1000H ;ETC for rest of tables
OBJLOC EQU 50H

Another approach would be to make
the tables of a fixed length and define
specific addresses for them. That removes
the need to re-assemble the program for
each database but does not use memory
very efficiently.

Unfortunately, Adventure is not the
kind of game you can describe in such a
way that the program can be blindly
copied and played. However, I hope that
the description given here will allow
anyone to implement it on his system. If
you're wondering if it is worth the effort,
ask anyone who has played before.

External subroutines

Driving database labels
Hessage - User messades
Vocab = Basic vocabulary

1 SEREEEMXURSIRERELSLER S F] -; 1 ObJtxt -~
] E o

1 X ADVENTURE *] n::::t. =
! * x Stat =
! * Programmed by - K Reed x : o

1 ¥ Date = 12-Hau-B0 x
! * ¥

b ERERRERE R R AR R R R AR AR AR RN R Rk

BEGIN DATA

WORD HererHLyBCyDEsRnums I+ JolUser/<15>/

BYTE FlagrWisW2rBtemprCtemrrDoneit
BYTE Wordl/<4>/sSrace/’ ‘/!Cretlolpnnellf 1/elizerasos

1
|
| $REPLY =~ Gets a YES/NO reseonse from the user
I $HESS - Ourut to console END DATA
: $LINE - Read a\line from the console
| $RAND - Get a random number (Range 1-100) PROGRAM Adventure
starti! here=0
GLOBAL $REPLYr#HESS:3$LINE $RANK
SrSL moved: CALL $mess{0)

1] User flads 0 when set indicates a dark location
| He cant see unless cbJdect 0 is here

ObJect descrirtions
Hain event table

Location movements
Status check table

GLOBAL HessasesVocabsLoctxtsObulocsObdtxt
GLOBAL Evmt‘mnwnt rStatus

! Start at location O

! New line

Loctxt = Location descrirtions
DObJloc - ObJect locations (continued on next page)
PRACTICAL COMPUTING August 1980 73

(continued from previous page)

1 , Note that ObJloc(0) is enuivalent to simelu Obdloc Match?
Desci BEGIN IF (Users0)
IF (User(3)#0)User(3)=User(3)-1
IF (DbJloc=Here)GO TO Seen ! DObJect here
IF (DbJloc=512)G0D TOD Seen ! Carried Check:
TYFE ‘Everwthing is dark: I cannot see’
IF (User(4)80)User{4)=User({4)-1
GO TO Command
ENDIF
Seent CALL #Hess(lLoct:xt(Here)) ! Describe Here
look? Flaa=0 ! List obdects here
1=0
looki: IF (obJloc(I}=-1)G0 TO command | End of obdects
IF (obdJleoc(I)#herel)GO TO next
BEGIN IF (Flas=0) { ObJect here
CALL $mess(0) ! New line co:
TYFE ‘I can also see’ Cont!
Flas=1 | That messase onlw once
ENDIF
CALL $mess(obJtxt(I)) | Describe cbdect cit
CALL $Smess(0)
next ! I=I+1 ! Next entry
GO TO lookl
ca:
Commandi
HL=#Status | See if anuthing harrens =
GO TO Active £24
Froci | Returns here
IF (User(2)#0)User(2)=Usert2)-1 | Count down active
CALL SRAND(#Rnum) | Keer random serinning |
CALL $Hess(0) CAt
CALL sLine ! Get a line
=@SpF | Foint to it 5
GETWD! CALL Lookup(#u1) | Ser if we know it £5:
Fassed:
BEGIN IF (W1=Bnedgl) | Not found in table
BEGIN IF (BHL=Cret) | Ho more words
Errit TYPE 1 Just dont understand what You mean® céi
BEGIN IF (Hord1>90)
TYPE ‘Perhars if wou used UPFER CASE°
ENDIF
GO TO Commarnd ! Try again ¥
ENDIF ez
Sean BEGIN IF (@HL=Srace) ! Next word
HL=HL+1
GO TO Getwd ce:
ENDIF
IF (BHL=Cret)GO TO Errl ! No more Words
HL=HL+1 !
G0 TO Scan
ENDIF Doit?
1 If we fall out here we have a known word in Wi, Now see
! if we can find one for word number 2 Mitact?
W2=Bnesd1 ! No word det
Sean2i IF (BHL=Srace)GO0 TO Second ! Found one
IF (PHL=Cret)GO TD Allin I NO more
HL=HL+1
GO TO Scanz2 1
]
Second: HL=HL+1 ! Point to word '
CALL Lookup({#Wa) ! See if an obdect
BEGIN IF t(W2=Bnesd1) I Not found
Scan3! If (BHL=Cret)oD TO Allin
IF (@HL=Seace)G0 TO Second ! Another word found
HL=HL+1 ! Keer looking
GO TO Scan3
ENLDIF
. ho:
1 See if this word causes a change of_location
Allini HL=Hovemt(Here} ! Foint to movements invent
Moveit! IF (@HL=Brneal)G0 TO Homove ! End of list
BEGIN IF (EHL=W1} f+Entry found
HL=HL+1 Foint to dest
Eteme=@HL ! Go there.
Hare=Btemp ! Keer to butes
GO TO Hoved
ENDIF
HL=HL+2 I Next entry
GO TO Hoveit
nextabi
Nomove:
invent:
H Look ue the words in the main event table to see
! what (if anwthina) haesens. ALl
HL=#Event ! Foint to table
Doneit=0 ! Clear flas
Active! BEGIN IF (@HL=Bzero) ! End of table
IF (Doneit#0)G0 TO Command ! We did somethinsg
BEGIN 1F (W1 °13) | Explicit movement
TYFE "1 cannot g0 an that direction’
ELSE
TYPE ‘I cant®
ENDIF
GO TO Command i Get another command
ENDIF
A2l
IF (@HL=Bnesl)G0 TO Entry | Any match
IF (@HL=W1)}G0 TO Entrw | Ewact match
HL=HL+é& | Next entry
GO0 TO Active
Entrwi HL=HL+1 Foint to 2nd word

IF (@HL=Bnes1)GO TO Match
IF (BHL=W2)}GO TO Hatch
HL=HL+5

G0 TO Active

Exact match

!
| And match
|
I Next entrw

HL=HL+1. ! Condition pointer
BC=@HL | Get it
HL=HL+2 ! Point to actions

IF (@BC=Bneg1)G0 TO Doit End of conditions

1
Btemr=@BC ! Get this condition
BC=BC+1 ! Next operand
Ctemr=@BC ! Preload
PC=TAELE1{Btemr} ! Computed GO TO
BEGIN DAaTA
MBRE TABLE1/CO+C1+C2+C3rCArCS:Ca&rC7rCEB/
END DATA
IF (Ct re)GO TO d ! Check current location
HL=HL+2 : ! Next word pzir

GO TO Active ! Try next table entry

IF (ObJloc(Ctemp)=Here)GO TO eassed ! ObJect eresent
IF (511<0bJloc(Ctemer)<1025)60 TO rassed

60 TO Cont

CALL s$Rand(#Rnum} ! Frobable svent

IF (Ctemp>Rnum)GD TD rassed

GO TO Cont

IF (ObJloc(Ctemr)=Here)GO TO Cont ! Obdect not here
IF (511<0bJloc(Ctemr)<1025)G0 TO Cont

GO TO Fassed

IF {(ObJloci{Ctemr)#1024)G0 TO rassed ! Obdect not worn
GO TO Cont

IF (User{Ctems)=0)G0 TO Cont | Flas not zero

C=BC+1 | Next condition

B
GO TO Check

BC=BC+1

Btemr=2BC

IF (User{(Ctemr)#Btear)GO TO Cont
GO TO Passed

1F (UseriCLems) #0360 TOD Cont
GO TD Fassed

! Check flas value

| Flag zero

IF
GO

(DbJloc(Ctenr)#512)G0 TO Cont
T0 Passed

! Ob.ect carried

Bunditlén met so serform the actions

BC=@HL ! Point to actions
HL=HL+2 ! Point to next entrw
Doneit=1 ! Saw we have done something
IF (8BC=Bned1)G0 TO Active ! All done
Btemr=BEC ! Get action
BC=BC+1 ! Point to next
Ctemr=2BC ! Preload value
L}

PC=TABLEZ(Btear) ComFuted GO TO

In the followina TABLE3 1s simrlu a continuation of TABLE2
and not a sparate entity. It is done this waw to keer the |
comrller happuy as it can’t handle continuation lines

HEGIN DATA

WORD TABLE2/A0rAlrA2+A3rA4+ASrAGIAT »ABIAT+AT0/
WORD TABLEI/A11:A12rAL3rAL4rALSIALErAL7 1DonE/
END DATA

TYFE ‘I Have with me”’ Inventory
Flag=0
I=0
IF (0b.Jloc(I)=-1}G0 TO inven0d !
BEGIN IF (511<0b.iloc(1)<1025) !
Flas=1
CALL smess(ob.itxt{(I))
BEGIN IF (Obbloc(i)=1024) i
TYPE ’ which I am uwearina’
ELSE
CALL Smess(0)
ENDIF
ENDIF
I=I+1
GO TO inven
IF (Flaa=0)TYFE
GO TO Done

End of list
Carrled

Worn

New line

! Next entrw
‘Mothing at all”

BEGIN IF (ObJloc(Ctemr)#1024) ! Remove worn obdect

TYPE “1I am not wearins it”
GO TO Done
ENDIF
BEGIN IF (User{1)}=4) ! Hands full
TYPE ‘I cant. M« hands are full”
GO TO Done
ENDIF
ObJloc(Ctemr)=512 | Sau carried
User(l)=User(l}+1 | Urdate tote
GO TO Nxtor

BEGIN IF (User(i)=4) !
TYPE ‘1 cannot carry any more’
GO TO Done

ENDIF

BEGIN IF (ObJloc(Ctemr)=Here)
ObJloc(Ctemp)=512 ! Say carried
User(i)=User{1)+1 ! Urdate total
GO TO Nalor =
ENDIF)

TYFE ‘Im already carrsins it’

GO TO Done

Pick ur obJect

74

PRACTICAL COMPUTING August | 980

Adventure JJ =

A3l BEGIN IF (ObJloc(Ctemr)=Here) | Dror obdject AlS: BC=BCH+1 ! Stare value in flas
TYFE *I dont have it” Btemr=BBC ! Get 1t
GO TO Done User(Ctemr)=Btems
ENDIF GO TO MNxtoe
IF (Obdloc(Ctemer)=S12)User(1)=User(1)-1
ObJloc(Cteme)=Here Alé: ObJloc(Ctemr)=Here ! Create obdect
GO TO Nxtor 60 TO M:toe
Al7: ObJloc{Cteas)=2048 ! Destrow obdect
GO TO N:tor
A4l BEGIN IF (DbJloc(Ctemr)=512) ! Wear it
ObJloc(Cteme)=1024 ! S5ad carried Donies GO T0 Coamand
User(1l)=User(1)-1
GO TO Nsxtop
ENDIF ! Lookur - Find word 1in table
BEGIN IF (ObJloc(Ctemr}=1024) ! Each entry consists of a four bwte riame
TYPE ‘I am alreads wearind it’ 1 followed by an bute identification code. Ed ‘FREN .2
ELSE ! This code 1s returned if founds otherwise -1,
TYPE ‘I dont have it’
ENDIF SUBROUTINE lookus(DE)
GO TO Done
LODP J=0 TO 3 ! Clear out word
Wordlid)=Srace
AS1 CALL SHess(Messase!Ctems)) | Ture mensase ENGLOOES
GO TO Nxtor ! Get next action
LOOF J=0 TO 3 ! Extract 1st 4 letters
a6t T0 D | ribe locatio IF (BHL=Srace)GD TO Gotwrd ! End of word
e oairese Pineactib 3 IF (BHL=Cret)GO TO Gotwrd | End of line
Mord|id)=8HL ! 0=t chararter
AB: Here=Ctems ! Immeadiate mgue HL=HL+1
GO TO Nitor ENDLODGP: J
AR User(Ctemr)=255 ! Set flau
GO TO Nxtoe
Gotwrd: BC=#Yocab ! Point to table
AL0Y User(Ctemp)=0 I Clear flas. BDE=Hreal | Assume no match
Nxtor! BC=BCH+1
GO0 TO MNutact Find: Flaga=0 | fndit Flas
LOOF I=0 TO 3 ! 4 butes
All: DE=0bJloc(Ctems) ! Swar obJects IF (BBC=Hnedl)RETURN ! End of table
DbJloc(Ctemr)=0Obiloc(Ctemr+l) | Move lst obdect IF (Wordl(1)#@BC)Flas=1 ! Ho match
Db.Jloc(Ctemptl)=DE | Move 2nd obJect BC=HCAL
GO TO N:utowr ENDLOOP 1
AL2: STOP ii8¥ow the prOSPEm BEGIN IF (Flaa=0) ! Hatched
Hteme=@RC ! Get ID
PLE=RBtems ! Pass it to caller
RETURN
AL3Y TYPE "Okau’ ! Say okaw ENDIF
GO TO Done ! And Frocede
HC=BC+1 ! 5kir over ID
Al4: TYFE ‘Are wou sure wou want to auit now’ GO TN Find ' And tru asain
CALL $rerlu(#i)
IF (i=0)G0 TO Nutact END
STOF ‘Okay «.. bwe’ m

BY DSBORNE

Introductinn to Microcomputers Series

Vol 0: Beginners Books. .

Vol 1: BASIC Concepts

Val 2: Some Real Microprocessors (without binder),
Vol Z: Some Real Microprocessors (with binder) . |
Vol : Updating supplement set Nos, 16

Vol 3: Some Real Support Devices (without binder)
Vol 3: Some Real Support Devices (with binder) . .
Vol 3: Updating supplement set Mos. 14,

1 Binder (Specify for Val 2 or 3)

1 Updating supplament (Specify for Vol 20r 3) .
PET and the IEEE 488 {GPIB) bus

6800 Programming for Logic Design. . .

B080 Programming for Logic Design,

Z00 Programming for Logic Design . , ,

ZB0 Assembly Language Programming .

B502 Assembly Languape Programming . . .
B0B0AB085 Assembly Language Programming .
6800 Assembly Language Programming

Accounts Payable and Accounts Receivable .
Payrall with Cost Accounting

General Ledger

Some Camman BASIC Programs . | .

Running Wikl

MAGAZINE BACK ISSUES
Miero 6502 Jaurnal
Persanal Computing.
Inerface Age

Dr Dobbs Journal
Computer Music Jurnal .
Recreational Computing . .
BYTE

Creative Computing. .
Caleulators and Computers .
Kilobaud Microcomputing . ,
Compute — for the 6502

PRACTICAL COMPUTING August {980

Campute Il - for the Single Board .
Magazine Storage Box (Holds 12)

MAGAZINE SUBSCRIPTIONS (all processed within 3 weeks)
Micro 6502 Journal (12 issues) £13.50
. (12 issues] £17.50
.. (12 issues) £17.50
.. 112 issues) £25.50
<o (10 issues) £15.00
... (B issues) £10.50
++ (12 issues) £25.00
.. 12 issues) £17.00
.. 12 issues) £22.00
+o. [Bissues) £10.60
. 112 issues) £21.00
6 issues) £10.50

Personal cnmpm
Interface Age, .
Dr Dabbs Journal ;

Creative Computing
Kilobaud Microcomputing .
Compute for the 6502 . .
80 Microcomputing 3
Compute Il - for the Single Board

FOR THE 6502
See Magazines and Subscriptions!
Best of Micro, Vol 1

See Oshoma Books!
5.

Programming the 6502 Zacs) ., .
Programming the 6502 {Foster), .

5502 Applications

6502 Software Gourmet Guide and Cookbook
32 BASIC Programs for the PET

FOR THE 8080

Sea Oshorne Books!

B080 Programmers Pocket Guide
B0B0 Hex Code Card

8080 Octal Code Card,

MAIL ORDERS, VISITS,
TRADE ENQUIRIES
WELCOME. CREDIT
CARD ORDERS
ACCEPTED BY
TELEPHONE/TELEX
Payment must be in
sterling, on a UK bank.

Room PC

11, Cambridge House
Cambridge Road
Barking, Essex

1G11 BNT England
Tel: 01-591 6511
Telex: 892395 LPRISE

8080 Special Package: Monitor, Editor, Assembler . . .
a&s&xa&mumgeamumlumm

BﬁSICCompulaGamB

More BASIC Computer Games . . .

What to do After you Hit Retum . . A
SUPER-WUMPUS — A game in 6300 Assembler Code & BASIC. . .
Computer Music Book

Computer Rage (A board game)

Artist and Computer

Games, Tricks and Puzzies for a Hand Caleulator,
Introduction to TRS-80 Graphics

Take My Computer Please ... (Fiction)

Introduction to Low Resolution Graghics for Pet, Appie, TRSS . ..
Starship Simulation

FOR THE NOVICE

See Magazines and Subscr

Your Home Comguter, .

Getting Down to Business With Your Mmcunputet
Introduction to Personal and Business Computing . .

Getting |nvolved with Your Own Computer

Haw to Profit from Your Personal Computer .
Microcomputer Potpourri

Hobby Computers are Here

Naw Hobby Computers .

Understanding Mcrocompmex and Smal Computew S\vstarru
mmm Microcomputers and Small Computer S'muns w 3{%

Haw to Make Money with Your Microcomputer .
From the Counter to the Battom Line

s Circle No. 168
75

