Communication is problem in

programmed control

Part four of Mark Witkowski’s series concerns itself with the programmed control of industrial-
style robots and problems of the communication of ideas from the user to the machine.

HOWEVER BRILLIANTLY designed and con-
structed, and whatever sensory provision
is made on a robot device, its usefulness,
usability and performance is ultimately
dependent on the control algorithms used.
Not that one would want to spend a year
writing code — assume that robots are all
computer-controlled which is, of course,
untrue — to compensate for an unstable
mechanism, or trying to guess that the
world is doing because the robot is in-
sufficiently instrumented. Generally a
good robot is made usable by virtue of its

| programming, a lesser one may be saved.

Deterministic approach

In some cases, the software is so central
to an idea that the robot is not built at all,
just simulated on a computer graphics
terminal. Programming of robots tends to
fall into two categories, first the deter-
ministic approach, in which the robot is
programmed with specific actions known
to perform a given task. New ways are
always sought to program robots with the
minimum of effort for the maximum
effect and some have met with success.

Figure Ic. ¥/l keypad.

When direct teach mode instruction
becomes too cumbersome, programming
| languages are developed to describe the
problem and its solution. As there is an
incredible mass of detail in the most trivial
of everyday tasks, these languages are
being developed continually and re-struct-
ured to cope. This first category is the
province of the industrial robot and
industrially-orientated robot research.

The second software category falls
within the bounds of artificial intelligence
research, where the emphasis is on robot
problem solving, and where instead of
being instructed in minute detail, only a
broad outline or the final goal need be
specified, possibly in a natural language.
Artificial intelligence techniques are being
incorporated slowly into robot program-
ming languages as the tasks the robots are
required to perform become more com-
plex and the current intuitive methods are
found to be inadequate.

Currently, unfortunately, each robot
and manipulator tends to have its own
teach technique or programming
language. There has been little conformity

To
Computer

90

and standardisation, with no universally-
accepted language. Unlike different types
of computer which, even though they
have distinct order-codes, have standard-

Figure la. Visual programming device.

ised user languages, manipulators are still
sufficiently diverse in design to defeat the
compiler writer.

However, numerically-controlled
machine tools have been programmed in
APT for years — ITT research institute,
1967 — different numerically-controlled
machines are catered for by post-process-
ing a universally applicable intermediate
codeform from a single compiler into the
specific control signals required.

Simplest method

By far the most straightforward method
of programming an industrial robot is to
manhandle it through the desired
sequence of actions. Continuous path
robots, as used in paint spraying or weld-
ing, are effectively programmed by a
skilled human operator leading the arm’s
spray/welding head through a complete
spray or welding job with the actuator
power turned-off. The joint position
sensor values are recorded at frequent in-
tervals, either in computer memory, or on
tape. When the job is completed to the
operator’s satisfaction the power can be
re-applied and the robot will repeat the
operator’s actions exactly when the stored
data is re-played.

Assuming that one has taken the pre-
caution of placing a new workpiece in
precisely the position and orientation of
the original, the robot will do as good a
job as the man did.

With pick-and-place-type robots, the
arm is moved to a series of significant
positions in the sequence of actions with a
joystick control. Although there are many
possible designs for this type of control

PRACTICAL COMPUTING May 980

Robotics =

unit, in principle there will be a switch for
each of the degrees of freedom, and a
teach button. In a typical application, the
arm may be required to move to a com-
ponent feeder, grasp an item, move to a
press and deposit it in place, move out of
the way, pick-up the piece after stamping,
deposit it in an outgoing hopper and
finally return to the feeder to collect the
next blank.

This process will involve many discrete
steps and the manipulator is moved to
each using the multi-switch control. When
it is aligned perfectly at each point in the
cycle the teach button is pressed, and the
joint positions recorded. This is repeated
for each significant point, and there may
be many before the cycle is re-played to
check the sequence.

Specialisations

As the main control unit will compute a
straight-line trajectory between the points
during playback, it is essential for the user
to define sufficient intermediate points to
avoid obstacles — none of the actions
made between teach points is stored.

There are a number of possible special-
isations to this mode of robot instruction
by teaching. Figure 1a shows a Visual Pro-
gramming Device (VPD) used to program
the University of Rhode Island (URI) five-
degree-of-freedom arm which is shown in
figure 1b — Birk and Kelly, 1976, and
Kelly and Silvestro, 1977. A computer-
compatible TV camera views the base
upon which the objects the robot will
manipulate are placed. When the VPD is
placed on the base, it is possible to
calculate the co-ordinates and orientation
of the two lights, L1 and L2, from the TV
image. The VPD is placed round the
object to be grasped and the ‘P’ button
pressed on the keypad — figure lc.
During the playback phase, this will have
the combined effect of moving to, orient-
ating with, grasping and lifting the
selected object. ‘R’ has the effect moving
to, lowering and releasing the object at
that specified VPD position. Other
commands include ‘B’, Begin, and define
the ‘home’ position. ‘T’, move Through a
point specified by the VPD, ‘E’, End, and
move back to the home position. ‘Wnnn’,
Wait for NN.N seconds, allowing oper-
ator intervention. Recorded or memorised
points are available, TMn, RMn and PMn
for Through, Release at the Pick up at the
co-ordinates stored in Memory location n.
This is a particularly useful feature as it is
difficult to re-position the VPD repeat-
ably by hand.

Well-suited

This form of programming is well-
suited to the overhead gantry, five-degree-
of-freedom manipulator used. A more
general six-degree-of-freedom arm would
need programming in three dimensions.
Perhaps this could be done with stereo
television cameras or a navigation-style
position sensor.

The visual instruction scheme (V/I) is

PRACTICAL COMPUTING May 1980

Fiducial
Lights

TV camera

Figure Ib. URI V/I lay-out.

used in four stages. First the calibration
phase. Two fiducial lights, to the left on
the base-plate in figure 1b, are used to
calibrate the camera co-ordinate-generat-
ing program. Recording the sequence of
actions using the VPD and keypad is the
next stage. Then the Edit/Verify mode is
entered. With the aid of a single-step
facility, all the points can be checked and
changed if they are incorrect.

Misalignment can be corrected by
altering one or more of the individual co-
ordinate components. Points may be
added, if, for instance, insufficient
clearance was allowed around some
obstacle or when some new sub-sequence
has to be added. Points may be deleted if
a path-length proves to be excessively
long. When all is as it should be, the arm
is put into playback mode and used.

When a manipulator is used as a dis-
abled persons’ aid, particular care has to
be taken with the design and lay-out of the
input mechanism. Todd (1979) describes a
multi-mode input cluster with which tetra-
plegics may operate a manipulator in a
number of different ways by head move-

ments alone. He used a ring of 12 photo-
cells suspended in front of a video
monitor, which would operate the
manipulator when a light beam projector
attached to a pair of glasses frame shon on
to one of the cells.

Tree structure

Information displayed on the monitor
close to each of the photocells labelled
their function. Certain cells would have
the effect of changing the labels, and
hence the effects the Z-80-based con-
trolling microprocessor had on the manip-
ulator. These changes were organised into
a tree structure of different modes, in-
cluding direct control, pre-programmed
automatic picking-up and changing to a
different input device.

In addition to the photocells, there was
also a ring of 12 momentary push
switches, arranged in the same manner as
the photocells — so that the monitor
labels were still useful — operated by a
stick held in the mouth. There was also a
joystick, operated by placing the lever in

fcontinued on next page)

91

(continued from previous page)

the mouth, which offered a multi-dimen-
sional input mode, up/down, left/right,
in/out and two levels of breath pressure.
Furthermore, three switches could be
operated with the side of the user’s head.
Some of these modes could be used to-
gether, some separately. While the
patient was using the manipulator to feed
himself, it would be unreasonable to
expect mouth-operated control.

With any taught-sequence robot, the
ability to edit, modify, add and delete
actions is particularly important. In the
simplest case one would just record the
values of the manipulator joints in
sequential computer store. The URI team
has suggested that the use of a linked list is
a more effective approach. Data for each
point, or node, which will include a label

| — so it is named — a mnemonic — Move,

Wait — the arm joint values — X, Y, Z,
angles, grip, speed — and finally a
‘pointer’, the place in a memory where the
next data unit is to be found — figure 2a.

Data nodes

The position in memory has no signif-
icance to the order in which the data
nodes will be used, the edit/verify and
playback modes will follow a line of
linked pointers which the record mode set-
up. Playback is a matter of taking the
data from the current instruction and
interpolating a path until the robot
assumes the attitude specified in the
successor node, which then becomes the
current instruction. This is then repeated
until a node with a special end-of-queue
pointer ‘*‘**" is found.

Deleting a node is a matter of changing
the current predecessor pointer so that it
points to the current successor node. The
removed node’s pointer is changed to
point to the first node in the free list,
which initially consists of all nodes, the
action list is built-up during record mode
by changing pointers from the free list to
the action list. The special pointer that
indicates the start of the free list FREE is
then changed to point to the recently

Figure 2a. A linked list.

removed action node, figure 2b.

Adding a node to the action list is a
similar matter of altering the current in-
struction’s pointer to the top of the free
list, which is contained in FREE, altering
the FREE pointer to the next free node
and pointing this new successor node the
the old successor node as in figure 2c.
Linked list storage allocation is a standard
computing technigue, about which more
can be found in the majority of books on
data structures — Knuth, 1968.

A doubly-linked list, in which a second
set of pointers point from the successor to
current and current to predecessors would

| allow the actions to be re-played or

searched in reverse order. There are
doubtless some instances where this would
be helpful.

A majority of robots will be

| programmed by teaching them. It offers a

number of important advantages over
other methods. There is no need for the
operator, who is presumably already
skilled in the work the robot is to per-
form, to understand the intricate detail of
robot operation. There is also no need for
the operator to learn a specialised pro-
gramming language, and the machine is
ready for use as soon as it is
commissioned. Program development and
debugging are, therefore, accomplished in
the minimum time. Furthermore, there is
a minimum of sophisticated equipment in
the work-area, at most keypad or joystick
control, improving the potential reliability
of the whole system.

There are also many disadvantages and
limitations to this form of programming,
while the robot’s action may be per-
formed ad infinitum with no variation all
is well, however there are many situations
in which a robot should be programmed
by telling rather than showing it — Hohn,
1979, Holt, 1979.

Consider the task of picking eggs from
a feeder, i.e., a fixed location, passing
through some inspection processes, and
finally transferring them to a carton —
figure 3 — or that of picking the next
item of a neatly-stacked pile, each of

which is to be found at a position lower
than the last.

One fairly bad solution would be to
train the whole sequence explicitly. By
training the fixed sequence, supply, PI1,
P2, P3, P4, branch, it could be saved as a
macro. Then it would only be necessary to
train each of the different branch paths
and, after each, press the macro-expand
control which substitutes automatically
the stored path into the linked-list sequence
action queue.

Real power

The real power a programming lang-
uage gives a robot user is in relation to
acting on sensory data. We didn’t decide
on how to describe the tests on those eggs,
or how to dispose of bad ones. As soon as
anything more than a few binary inter-
locks are considered the possible combin-
ations of sensor tests explodes and finding
some orderly way of handling the ensuing
branch points, feedback loops and error
recovery becomes essential.

Subroutine call or macro-expansion
can, as with all computing, reduce pro-
gramming effort considerably, as well as
impart a much more modular, top down,
control structure to the task solution,
particularly where small modifications are
required to a basic action sequence. Lang-
uage makes the description of transform-
ations to the already-programmed actions
more powerful. It becomes possible to
describe actions relative to some object or
previous action, rather than absolute
position, or to superimpose the motion of
a conveyor belt on which the work-piece is
moving.

In some circumstances, it may be desir-
able to rotate, expand or contract the
sequence, or reflect it to give a mirror
image. Consider the left- and right- hand
sides of car assembly. Where absolute
positioning is required, manual control of
the action sequence may be insufficiently
accurate or repeatable. Print statements in
the language are used to provide a written
log of robot activity, display messages and
sound alarms when operator assistance is

Figure 2b. Removing a node.

~

~—tMnemoni
5
7
~N
o
?]

{ Action Ilsij

H
q

predecessor

pointer

Q

current
instruction

.

pointer

EN

Deleted \ _ - Top of free nodes
{ Piaced on free list)

zib'i_. Removing ¢ node

92

PRACTICAL COMPUTING May 1980

Robotics =

called for. There are many instances where
the design criteria for a good robot control
language are similar to those of any other
type of computer language. They must
allow the user to specify every aspect of
the task to be performed, without being
too cumbersome. Robot languages for
manipulators may either describe the task
in terms of robot motions or the position
and transformations of the work pieces.

WAVE from the Stanford artificial in-
telligence laboratories — Paul, 1977 — is
an example of an industrially-orientated
manipulator control language. It is
written as a sequence of one-line instruc-
tions, and is worth closer examination. In
WAVE, an object is described by the
position the manipulator must be in to
grasp it. There are six items required to
specify the position and they are assigned
to a variable name thus:

TRANS variablename 30,20,10,0,90,0
assigns a particular position (X=30,
Y =20, Z=10) in co-ordinate space to the
gripper with a unique orientation. The
Scheinman arm at Stanford has six
degrees of freedom and the latter three
parameters to TRANS specify the angle of
attack of the gripper completely in re-
lation to fixed reference orientations.

Instructions

MOVE variablename
would then cause the manipulator to
move from its current position and,
assume the co-ordinates and orientation
specified in a previous TRANS instruc-
tion, which in itself caused no action.
MOVE is an absolute instruction, motions
relative to the current position can be
made with:

CHANGE vectorl,scalar,vector2,angle,time
which moves the arm a distance specified
by scalar in the direction given in vector 1,
also rotating it by angle about vector 2, at
an optional speed.

VECT variablename x,y,z
is used to specify a vector with x,y and z
components, and can equally be used to
give a direction or a force heading and
value. The gripper is opened and closed
with:

OPEN S5
open the gripper to five inches and:

CLOSE 1
close the gripper, the jaws will close until
either physical resistance or a specified
force is met by appropriate sensors. If
they close more than the parameter
allows, less than one inch, a well-defined
error condition is generated, usually
meaning that the object to be grasped was
not in the expected position.

CENTER |
centres the hand about an object using
touch sensors on the insides of the fingers,
without moving it. CLOSE and CENTER
use sensory data inherently, whereas
MOVE and CHANGE do not.

The STOP instruction may be used to
abort a movement when a certain, ex-
pected, pre-condition is met. So the code:

VECT DOWN 0,0, —1

PRACTICAL COMPUTING May 1980

=

Current i
Instructions ST o New .l Hioes
- -
2 Successor Nodes
F/-—-—-—-—— T T] e
‘\C_ old
Successor

(r

Figure 2c. Adding a new node.

VECT HIT 0,0, —30

STOP HIT,NIL

CHANGE DOWN, 10,NIL,0,0
moves the arm down a maximum of 10
inches in the Z direction only, vector
DOWN times a scale factor of 10, but this
stops if a force vector of 30 oz. is encount-
ered in the minus Z direction, upwards.
The co-ordinates of the obstacle that
caused the arm to halt are saved in
FLOOR, they may be used later by:

RESTORE FLOOR
this save and restore feature is particularly
important in remembering where objects
already manipulated are — rather than
where they ought to be.

There are several forms of program
control:

JUMP label
clearly transfers control to code at
‘‘label:”’, lterative actions are controlled
by the loop instruction:

SOJG loopvalue, label
which decrements the contents of the
variable loopvalue and, if it is still
positive, jumps to label. Loopvalue is init-
ialised with the instruction:

ASSIGN loopvalue, n
for n times round the loop, these loops
can either be used to repeat a total
sequence of actions or make final position
adjustment iterations using sensory data.

Error handling is by the SKIPE n
instruction, skip over the next instruction
if error condition ‘n’ is encountered.
There are many possible predictable error
conditions — gripper closes beyond
expected amount, failed to STOP, object
encountered where none should be.
Alternatively, SKIPN skips the next
instruction if an error is not trapped. This
form of error handler is all very well, as
long as the programmer is aware of what
is likely to happen so provision can be
made.

WAVE allows a complete program to
be built-up in ‘macro’ modules, each of
which may be tested in isolation, starting
with some clearly-defined condition and
exiting in an equally clear state for the

next module, or on giving an error
message. The *“WAIT error message’ com-
mand halts the system, prints the “‘error
message’’ and waits for operator inter-
vention. Because of the uncertainties
inherent in all real-world manipulations,
WAVE offers a number of facilities.
SEARCH X,Y,0.1

sets-up a box search in the x and vy planes,
starting in the x direction, with increments
of 0.1 in figure 4. This pattern of initial
guess followed by a sensor driven search,
or some variation, is a standard technique
in robot assembly programming.

Assembly operations

In a number of assembly operations,
close fitting parts can be better mated with
some of the degrees of freedom released,
such that they are only balanced against
gravity and acceleration forces. They will
then comply to external imposed forces to
prevent jamming:

FREE 2,X,Y
gives translational compliance in the x and
y directions.

SPIN 1,Z
gives rotational compliance.

FORCE vector
maintain the given force in the direction
of the vector. To further ease the
problems associated with close assembly:

WOBBLE 0.1
superimposes a 0.lin. sinusoidal
perturbation on the hands’ movement.
These compliance and oscillatory modifiers
are designed to reduce the incidence of
close-fitting parts seizing together if force
is applied at some angle not exactly per-
pendicular to the line of best fit.

The amount of processing required to
convert these instructions into a form suit-
able to drive the arms motions is not
trivial.

In this case the actual drive parameters
are planned, using a model of the arms
physical dimensions, possible motions and
dynamic considerations in a time-shared

fcontinued on next page)

93

| {continued from previous page)

PDP 10. The assembly-language-like form
of WAVE is translated into arm control
object program. Planning also check that
the requested action is not impossible with
the configuration used.

The plan is executed in a PDP 6 which
interprets the object code, evaluating
trajectories and acting as a six-degree-of-
freedom servo, re-computing as needed
where pre-planned actions have been
modified by CENTER or STOP. Efficient
dynamic control, particularly where a
manipulator is operated close to its design
tolerances, as well as other kinetic and
static considerations are covered by
Raibert and Horn, 1978, and Horn, 1979.
Drazan and Jeffery, 1976, control a three-
degree-of-freedom pneumatic arm with
on/off valves.

The more recent trend in languages for
manipulator control has been to bring the
syntax more in line with current Algol-like
programming languages. BEGIN
END block structure, IF ... THEN ...
conditionals, WHILE ... DO ... and
REPEAT ... UNTIL ... control structures
— Paul and Nof, 1979.

Stanford’s later language AL, a suc-
cessor to WAVE, also has an Algol-like
structure and introduces new ideas into
this problem area — Finkel et al., 1974.
Al, and the MIT language LAMA —
Lorano-Perez 1979 — and others —
Ambler and Popplestone, 1974, are all
concerned, to varying extents, with des-
cribing assembly tasks by the objects
which are to be manipulated, rather than
the actions actually required to perform
the task.

It would be by far preferable to state
the problem in English, or some subset,
than describe actions. In all cases this will
dramatically increase the analysis and
planning stages to produce the executable
plan. Consider the effects of inserting the
primative instruction:

INSERT (OBJECT,HOLE)
on both computational and knowledge
database requirements.

With all the advantages of program-
ming languages, it would be elegant to
also incorporate the directness of the
teach mode. Gini and Gine, 1978, report
on the POINTY system in which the
manipulator is used to point at objects
and generate data structures automatically
about that item in AL. Eventually the best

Figure 3. A problem list for a subroutine.

of these ideas will find their way on to the
work-shop floor. One may even, one day,
be able to program a robot in natural
language — Bernorio, 1977.
Programming of mobile robots does
not need the same degree of transform-
ational arithmetic as manipulators, as
they are, in effect, only two-degree-of-
freedom devices. Because of this, there is
almost no need for highly-specialised
languages to control them any
computer language will suffice so long as
the robot hardware is interfaced to the
software in some logical manner. Further-
more, the robot is seldom instructed in
terms of absolute co-ordinates, MOVETO
X,Y; but rather in terms of relative

motions, MOVEFORWARD 10 or
_Act}‘:pl ey
position —— :
. Move to probable
found A Er " position
oy
X Give up

Figure 4. A box search.

GOLEFT UNTIL SENSOR3 > X.

Even when the algorithm functions in
absolute co-ordinate space the transform-
ation to relative motion, even if must be
planned, is straightforward. The pro-
gramming language LOGO has been used
to teach children about various concepts
in mathematics and computing using
small, two-wheeled, turtles which, with a
pen attached to their undersides can be
programmed to draw pictures on the
floor, according to programs the children
write — Papert, 1971a and 1971b, and
Papert and Solomon, 1971.

Less computation

As there is far less computation in-
volved in determining the vehicle’s actual
path, these languages can be interpreted.
Input text is scanned directly to perform
the actions, whereas WAVE had to pass
through a planning stage. The advantages
of easy testing, editing, rapid turnaround
and good diagnostics usually more than
outweigh the time overheads imposed by
interpretation. While the school children
will see only the simpler aspects of
LOGO, a full implementation of the lang-
uage can be used for complex A.l
programming — bundy et al., 1978.

Process |
Process 3
Branch (-08). SrEaABIE
—p 20000 3]
Supply
Process 4 36
Return

94

References

Ambler AP and Popplestone R J (1974) Inferr-
ing the position of bodies from specified
spatial relationships in AISB Summer Con-
Jerence, July 1974 held at University of
Sussex. pp. 1-13.

Bernorio M, Bertoni M, Dabbene A and
Somaluico M. (1977). Programming a robot
in quasi-natural language in The Industrial
Robot. 4-3 (September 1977) pp. 132-140.

Birk J R and Kelly R B (1976). New robot
programming devices for teaching assembly,
inspection, materials handling, and pallit-
ising tasks in 3CIRT/6ISIR paper B4, pp.
B4-33 to 42. International Fluidics Services
Ltd, Kempson, Bedford.

Bundy A (ed.) (1978) Artificial Intelligence:
An introductory course. Edinburgh Univer-
sity Press. ISBN 085224-340-5.

Drazan P J and Jeffery M F (1976) Micro-
processor control and pneumatic drive of a
manipwlator arm in 3CIRT/6ISIR paper D2,
pp. D2-9 to 20. International Fluidics Ser-
vices Ltd, Kempson, Bedford.

Finkel R, Tavior R, Bolles R, Paul R, and
Fieldman J (1974). AL, a programming
system for automation. Stanford A I Lab.
Memo ATM-243.

Gini G and Gini M (1978) Object description
with a manipulator in The Industrial Robot
5-1 (March 1978) pp. 32-35.

Hohn R E (1979) Application flexibility of a
computer-controlled industrial robot in
Industrial robotics, Vol [/Fundamentals.
Mitchigan: Society of manufacturing engin-
eers. ISBN 0-87263-045-5 pp. 177-195.

Holt H R (1979) Robot decision making in
Industrial robotics, Vol 1/Fundamentals.
Mitchigan: Society of manufacturing engin-
eers. ISBN 0-87263-045-5. pp. 197-205.

Horn B K P (1979) Kinematics, statics, and
dynamics of two-dimensional manipulators.
In: Artificial Intelligence: An MIT pers-
pective Vol 2 (Winston P H and Brown
R H edgs.) pp. 273-308. The MIT Press,
ISBN 0-262-23097-6.

IIT Research Institute (The APT long-range
program staff) (1967) APT Part Program-
ming. McGraw-Hill Book Company.

Kelly R R and Silvestro K C (1977) V/I A
Visual instruction software system for pro-
gramming industrial robots in: The Industrial
Robot 4-2 (June 1977) pp. 59-75.

Knuth D E (1968) The art of computer pro-
gramming, Vol 1/Fundamental algorithms.
Addison-Wesley Publishing Co.

Lorano-Perez T (1979). A language for auto-
matic mechanical assembly in Artificial In-
telligence. An MIT perspective, Vol 2
{Winston P H and Brown R H eds.) pp.
244-271. The MIT Press, ISBN 0-262-23097-
f.

Papert S (1971a). A computer laboratory for
elementary schools. M.I.T. A.l. Laboratory.
Artificial Intelligence Memo no. 246.

Papert S (1971b). Teaching children to be
mathematicians v. teaching about mathe-
matics. MIT Al Laboratory. Artificial In-
telligence Memo no. 249.

Papert S and Solomon C (1971). Twenty things
to do with a computer. MIT Al Laboratory.
Artificial Intelligence Memo no, 248.

Paul R (1977) WAVE — A model-based lang-
uage for manipulator control in The
Industrial Robot 4-1 (March 1977) pp. 10-17.

Paul R L and Nof § Y (1979) Human and
Robot task performance in Computer vision-
and sensor-based robots. (Dodd G G and
Rossol L etd.) pp. 23-50. New York: Plenum
Press. ISBN 0-306-40305-6.

Raibert M H and Horn B K P (1978). Manipul-
ator control using the configuration space
method in The Industrial Robot 5-2 (June
1978) pp. 69-73.

Todd D J (1979). An investigation into the
uses of @ microcomputer in the control of a
manipulator for tetraplegics in Engineering
and Medicine 8-4. pp. 193-200. m

PRACTICAL COMPUTING May 1980

	robotics4_1.bmp
	robotics4_2.bmp
	robotics4_3.bmp
	robotics4_4.bmp
	robotics4_5.bmp

