\

Forth language

Forth consists of words and new words must be compiled and entered into its dictionary.
Following a description of the dictionary and compiler, Brian Woodroffe discusses
advanced concepts in this third article.

. Having shown how the address interpreter
iexecutes lists of addresses to execute

- program commands and that threaded
: code is compact, I will now explain how
- Forth builds these lists, i.e., how it com-
" piles. Each list representing an action is

rather like a verb in 2 natural language and

. in Forth is called a WORD. The collection
" of these words, which is Forth, is known
. as the dictionary. The outermost WORD
; in Forth breaks input text down into char-

“acter strings which it then searches for in

. the dictionary. (Spaces are important, for

i nstance,
- number, whereas

‘—1’ is treated as a negative
‘— 1’ is treated as the

. arithmetic subtraction operator followed by
- the positive number one.) If the string is
¢ found, it is executed, otherwise an error
“message is generated. The dictionary also
- needs a mechanism to aliow the search to
. occur. Searching involves a traverse of all

the words in the dictionary. Each entry has

“a pointer to the previous one (link field),
“which makes the dictionary a linked list.
: To enable matching of the source text each

“ word also has its name in ASCII form

-(name field). Dictionary entries for each

s word, List 1, have four fields — name
 figld, link field, code field and parameter
: field. The name field also contains data for
wuse by the compiler (precedence and
" smudge bits) as will be explained, and it

-includes the length of the name to allow
-variable name lengths of up io 31 charac-
. ters.

; For language expansion it is important
-to be able to build dictionary entries for
-new words. This is done by invoking the
£ compiler. When the compiler is invoked
i(Forth word “:%), the language state is
:switched from execution to compildtion.
; Next, input text is scanned forward for the
"next text string which is used to build a
‘newly created name field. The name is
smudged” so that during the building of
sthe incomplete definition, the same name
‘cannot be found. This normally prevents
- recursion, but again in Forth, this rule can
;be overcome, List 2. Then the linked list
“of the dictionary is updated by copying it
~into the dictionary link and the address of
*DOCOL. is copied as this new word’s code
cfield, Next, input text is scanned for char-
“acter strings. As these character strings are
-matched with words that already exist in
sthe dictionary, the code field of each word
“found is copied into the parameter field of
ithe word being compiled. Finally, as the
“word to terminate compilation is encoun-

“of the deﬁmuon and the Forth program is
returned from the compile state to the

;iMRELESS WORLD DECEMBER 1983

[

i

fered 3’ SEMIS is copied as the last word -

; IMMEDIATE

by B. Woodroffe

execution state. The compiled word is now
‘unsmudged’ to allow it to be accessed.
The compile process can be quite long as
many dictionary searches have to be made.
As the dictionary is a linear list and the

code routines which ultimately have to be
compiled are at the bottom, it is a long
search. No speed up algorithms such as
hashing have been applied to standard FIG
Forth though there has been experimenta-
tion®*!%, As so much work is done during
the compile phase the execution perform-
ance of newly defined words is nearly as
quick as predefined words. Further,
as the first half of the dictionary enuy

List 1. Each dictionary entry has four fields called name field, link field, code fieid and

parameter figld.

Dictionary entry
76543210

p=precedence, s=smudge, len=length of name

NFA ips<len>>

Oasciil1 :

Qascii 2 ASCH characters of word

0.

lasciin d7 set on last character of name
LFA < > 16 bit address of previous n.f.a.
CFA < > 16 bit address of code routine
PFA < >

< = parameters, normally other c.f.as

< >

List 2. Example of recursion in Forth to calculate a factorial.

First define

: MYSELF
LATEST
PFA CFA,

" { putaddress of word currently being defined on stack)
(convertto code-field address and compile -)

{ itin d;ctmnary sa that it may call itself)

; IMMEDIATE
‘precedence’. }

Then use myself in the recursive definition
: FACTORIAL{ n...}

DUP1=IF ELSE

DUP1 - {nn=-1...1}
MYSELF

® : { nl;=n*[n-11] }
ENDIF

¢

{ asthis word Isto execute when in the compile state it has

{ end of recursion?, yes leave tas 11=1)

{ call myselfto calculate n—11)

List 3. Definitions of [F, ENDIF and ELSE.
 iF

COMPILE OBRANCH {
HERE {
0, (
IMMEDIATE {
. ENDIF
HERE

OVER —
SWAP !
IMMEDIATE

: ELSE
COMPILE BRANCH {
HERE O,

SWAP
[COMPILE] ENDIF

where are we? }
caleulate offset to HERE executed in IF }
patch in offset to address leftby IF)

compile into the dictionary the c.f.a. of ‘'OBRANCH’)

place an stack where we are)

make space for jump offset)

make compiler execute this word, even if in compile state)

53

compile run time address of routine to skip false statements) —-
{ make space for jump offset }
{ getaddress of where IF was)
{ use ENDIF to fix address, ENDIF is immediate and to overwrite
- that such that it is compiled)

ShinnedFon AR S - 2

List 4. Examples of VARIABLE and CONSTANT.

{ nothing — p.f.a. s storage |ocation foran offspring of type VARIABLE)

{ constants provide a constant value which has been)

: VARIABLE
<BUILDS { variable is a new parent ward }
. { store in the p.f.a. the value that was top of stack }
DCES> { start defining what offspring will do)
: CONSTANT
<BUILDS ,
DOES> @
; { stored in their p.f.a.)
0 VARIABLE ABC { ABC is an offspring with initial value 0 }
1000 CONSTANTK | Kis an offspring of vatue 1000}~

(name and link fields) is only required
during compilation for fixed applications
where compilation is not required, these
fields can be deleted. This dramatically
reduces the memory requiremenis of the
Forth system!!, and can be especially use-
ful when the code will be placed in rom.

To enable the compiler action of Forth
to do more than just that described above
certain words need to execute even when
the language is in the compile state. This
gives the compiler the full capabilities of
Forth. These words are generally involved
in building control structures for the com-
piler (I¥-ELSE-ENDIF, see List 3).
These words have a precedence bit set
which the compiler recognises when it
matches the input text so instead of com-
piling its code field it executes it. In the
case of IF the compiler compiles into the
dicdonary the c.f.a. (code-field address) of
OBRANCH and advances the dictionary
pointer to allow the as yet unknown offset
to be placed. It also pushes this address
onto the stack so that when the compiler

encounters an ELSE or ENDIF statement .

it can calculate the offset back to the IF
statement and store the offset there. This
shows the power of Forth in that the com-
putational ability of the language is avail-
able to the compiler and to the user.
Further there are times when words that
would normally execute (i.e. have prece-
dence) need 1o be compiled (i.e.-execution
action delayed until the word currently
being defined executes), This is done using
the word [COMPILE]. Again, it is
sometimes required- to delay compilation
of a word untl the word that contains it
executes, This is done using the word
COMPILE.

Advanced concepts

With an idea of how the inner interpreter
(address interpreter) and the compiler
(text interpreter) work we can now move
on to advanced ceoncepts including exten-
sion, vocabularies and virtual memory.
Forth is either in the compile state, when it
finds words and copies their code-field
addresses into the dictionary to form new
eéntries, or in the execute state, when it
executes each code-field address encoun-

tered. I have shown how certain immediate

words can override the state, and can even
execute in the compile state. It is also pos-
sible to overrule words which are declared
as immediate and compile them, as in the
case of ELSE which was described earlier.
In Forth, even the compiler can be mod-
ified. Not only can new compiler control
structures be introduced but also new

54

compiler words may be defined. Normally
the programmer would have to rewrite the
compiler but with this feature, known as
extensibility, modification is relatively
simple. It involves use of the words <B-
UILDS and DOES>> to define a new class
of words. The defining word defines words
of this new class. Behaviour of the new
defining word is determined by the words
between <BUILDS and DOES>, i.e.
when a word of the new class is defined,
behaviour of the new word during compila-
tion is determined by what comes between
<BUILDS and DOES>, When a word of
this new class executes, it executes the
words following DOES>. To allow the
parent class-defining word to access its ofl-
spring*(class-defining word to access its oft-
spring (class-defined word), the parameter-
field address {p.f.a.) of the latter is placed on
the data stack, Two simple examples from
the Forth compiler are VARIABLE and
CONSTANT, List 4. These can easily be
expanced to form arrays and tables. The
word *’ is also a defining type. When off-
spring of *:” are execused they call the word
DOCOL which decides how to execute their
pararneter field. An alternative
to DOQES> is used to define *:’; the assem-
bler is invoked so that the parent-word
execution field is machine code and not
Forth but in other respects it is the same,

The major part of Forth is the dictio-
nary, and to enable different problems to
be solved in different areas of the dictio-
nary each problem is given its own voca-
bulary. The dicticnary may have many
vocabularies alongside the normal basic set
of FORTH, ASSEMBLER and EDITOR.
'Using vocabularies means that the same
word may have different meanings, de-
pending on which vocabulary is active.
FIG-Forth has two active vécabularies -
CURRENT and CONTEXT. The former
is the one in which words are defined and
the latter is the one which is searched first.
All vocabularies are linked to FORTH
(Forth’s definition in Forth). Much debate
is taking place on the subject of vocabula-
ries concerning the subject of searching
vocabularies 11~ %3,

Virtual memory

Memory is the most precious resource of a
computer and although Forth makes very
efficient use of it, there are still times when
programmers wish it was infinite. Disc
memeory is much cheaper than semicon-
ductor memory but it is also slower. By the
concept of virtual memory, the memory
space available to the programmer is ex-
panded beyond the main memory to in-

clude disc storage so memory capacity as,
far as the programmer is concerned is only:
Jimited by the capacity of the disc, In .
Forth, the virtual-memory cancept is only
applied for data whereas in most processor.
applications (e.g INS16000 series) it is also
applied for program storage. Through use:
of the word BLOCK, the programmet capn, |

WIRELESS WORLD DECEMBER 1983

visualise the disc memory as processor
memoty. The Forth operating system re-
covers data from disc and places it in 2
buffer to make it accessible to the user
program. Many such buffers exist in the
host processor and BLOCK uses an algo-
rithm that determines whoch blocks
should be maintained in ‘the. store and
which should be written back to the disc.
With the right algorithm the number of
disc accesses will be minimal and the
apparent memory-access time low.

Space and time

I have shown how the Forth dictionary is
created (i.e. its form), how it may be ex-
tended by compiling and how any proces-
sor may readily simulate the virtual Forth
machine by means of indirect threaded
code. As mentioned earlier, by intreducing
the concept of threaded code, execution
speed is traded for code space. So one can
expect that Forth is not as fast as the host
processor’s own code although it may ap-
preach it where many subroutine calls are
made. Execution of a process defined in
the source language divides inro two parts;
one is the examination of source-text to
find out what action is to be taken and the
second is execution of the actions by the
processor. In most systems the first part is
carried out by compiling source text in the
machine code of the host machine. In
Forth this means compiled into the thread,
the machine code of the hypothetical
machine. Target machine code is then run
in Forth using the address interpreter.
Running time can be traded for space by
choosing an intermediate language of suit-
able complexity. Running time perform-
ance of compilation has no effect on the

List5. Rep:res-ent'ation of‘algc_rithrn used for benchmark test, see Table 1.

8120 CONSTANT SIZE
0 VARIABLE FLAGS SIZE ALLOT
: DO—PRIME

FLAGS SIZE 1 FILL

0
SIZEODQ
FLAGS | + C@ .
IF .
IDUP + 3 +DUPI +
BEGIN
DUP SIZE <
WHILE
0 OVER FLAGS + C!
QOVER +
REPEAT
DROP DROP 14
THEN
Loop
S primes’” ;

(allocate B191 bytes foran array)

(fill array with '1¢, <true>)

{ counter)

{ set up a DO loop of 8190 times)
(1isloop counter, get relevant flag)
{ C@, C! are byte versions of @,!)

{ stackis...count, prime, K]

{ begin a block }

{ array index < size 7)

{ tast flag, to see if exit block)

{ setrelevant flag false, FLA\GS[KI)
{ Ki=k+prime)

{ end of block, loop back }

{ delete prime, K; one extra prlmefound }
{endof IF }

{ end of DQ. .. LOOP black)

{ print number of primes)

running time of the application program,
which leads to the view that the compiler
should do as much work as possible. Un-
fortunately, compiling to machine code
using a simple processor with limited
addressing capability, such as a current 8-
bit microprocessor, often results in the

code not fitting into the memory so an

intermediate target code is chosen, with
the accompanying penalty of interpreting
it, Forth’s address imerpreter costs some
tens of percent.

Other losses occur because microproces-
sors are not zero-address devices so the
zero-address function has to be simulared.
Memory-space benefits are illustrated by
the amount of memory required for a
Forth system, which is typically 8Kbyte
(may be rom) for virtual-machine simu-

Jation, the Forth compiler, i/o drivers,

etc., and BK for stacks, virtual-memory
buffers and the user dictionary.

Table 1. Relative speeds of various processor and languages.

Pracessorllanguage Time in
: seconds
CRAY-1 Fortran 11
88000 assembly language (8MHz2) 1.12
PDP11/70C 1.62
VAX 11/780 {C/Fortran/Pascal) 1.6-5.0
8088 assembly language {15MHz) 4.0
6809 assembly language 5.1
PDP11/40 C language 6.1
Z80 assembly language (4MHz) 6.8
6809 IMS Pascal compiled {2MHz) 8.9
PDP11/70 Decus Forth 11.8
Z80 Microsoit Basic compiler 18.6
8088 Pascal {Softech compiler) (15MHz) 19.4
88000 Forth (8M+z) © 27
6809 FIG Forth (2MHz) 45
8088 FIG Forth (15MHz) 55
8086 FIG Forth {(12.5MHz} 64
6809 FIG Forth {1.5MHz)* 67
Z80 Forth {Timin) (4MHz) 75
Z80 Forth {Laboratory Microsystems} {4MHz) 78
Z80 FiG Farth (4MHz} 85
6802 IM5 Pascal P-code (2MHz2) 105
6809 Basic 09 (2MHz) 238
6502 FIG Farth {1MHz) 287
6809 TSC Basic (2MHz} 830
£80 Microsoft Basic 1920
APPLE integer Basic 2320
TRS580 Microsoft Basic . 2250
6809 Computerware Basic 4303

* Used in my design as described in Wireless World

WIRELESS WORLD DECEMBER 1982

Forth is also fast because of the explicit
use of the stack. In languages using the
assignment operator, data normally resides
outside the stack. It is brought to the
stack, operated on, and finally placed back
into the store. If the next statement uses
the same variable it is once again taken
from the store and placed on the stack.
When computing partial results this causes
excess memory traffic, Unless optimiza-
tion is used this redundant memory activ-
ity will cause delays. Forth avoids this
because normally data only resides on the
stack. No unnecessary memory space or
time is taken up by temporary variables.

It is interesting to compare Forth’s per-
formance with the commonly used lan-
guage for microprocessors, Basic. Systems
using Basic have little compiler action, the
solrce text being saved in memory, al-
though the key words are converted into.
internal tokens. During program execu-
tion, each token is parsed and acted upon
in turn so the source of Basic’s execution-
time interpreter is close to that of the
source text whereas Forth’s source for the
running-time interpreter is close to the
language of the host computer. As all the
work in a Basic system is done while the’
program is running the speed penalty is
high; usually at hundreds of percent,
Further, since Forth compresses object
code into 16-bit addresses (code-field
addresses are the equivalent of takens) it is
as efficient as Basic in terms of memory
space.

Processing speed is an emotive issue
without benchrnark tests and unbiased
benchmarks are notoriously difficult to
produce, Table 1 was derived using the
Seive of Eratosthenes (see List 5) and
seems fair'®. Qualitatively, it confirms
what one could expect — assembly-lan-
guage is faster, followed by compiled lan-
guages with interpreted Basic well behind.
The table also shows how well the 6809

-compares with newer and more popular

designs and that it compares with at least
ong 16-bit device, the 8086, I would Artei- -
bute this to the instruction set as was
shown in the analysis of Forth word
NEXT. A more elaborate, special-purpose
instruction set does not necessarily lead to
a more effective processor.. This has been
shown in recent research into reduced in-
SIrUCTion set computers.

continued on page 61

55

continued from page 55

List 6. Array boundary checking using <BUILD .

: ARRAY
<BUILDS
OVER — SWAP OVER
SWAP,,
DUP + ALLOT
DOES>
DUP ROT -
SWAP @ — DUP 0= .
IF " array bound error, too low" QUIT THEN
OVER 2+ @
OVER <
IF " array bound error, too high” QUIT THEN
DuP +

.DOES>.
{ low high . . assumes low <h|gh)
{ delta low delta }
{ store low is p.f.a., delta as pfa +1)
{ that much storage, byjte address machine }

{..p.f.a pfa index)
{..p.f.a. required-delta flag)

{..p.fa. reqd allowéd]
(..pfa.reqdflag)

{ word index to byte index)

+4+ (add index-skip parameters, Iea\nng array
: address)
Forth problems ferent operations for the same operator by

So far, only advantages of Forth have been
discussed but it has some disadvantages.
The most obvious of these is notation. For
the beginner, reverse-Polish notation and
the lack of an assignment operator (;=) are
considerable ‘problems. Practice lessens
the problems though program comments
and .stack diagrams generally remain’
necessary to show what is going on.
Floating-point arithmetic is not stan-
dard and all data manipulation assumes 16-
bit two’s-complement arithmetic, but it
‘may be programmed in'®. This shows
Forth’s origin in the control field of com-
puting. However, many Forth pro-
grammers maintain that most problems
can be reduced to scaled-integer arith-
metic. This drawback makes one aware of
the processing cost of floating-point arith-
metic. Forth does not use “data typing’.
This means that integer operations are
used when logical operations are being per-
formed (‘0=" for NOT). There are also
separate operators for 32-bit arithmetic.
Computer languages can usually apply dif-

WIRELESS WORLD DECEMBER 1983

data typing.

A more serious drawback is the lack of
built-in data structures — not that Forth is
any worse in this respect than Basic or
Fortran. What is lacking are the type of
data structures available in Pascal. In com-
mon with the formerly mentioned lan-
guages, Forth lacks a method of checking
for overflow and array boundary condi-
tions in normal operation. But as shown in
List 6. This can be programmed in.
Naturally, this process increased execution

-tme but when the application works a

simpler version of array can be coded by
missing out the check. Finally there is as
yet no file management software. Access to
disc information has to be done using
BLOCK numbers.

Summary

I have shown that the programmer is re-
leased from the instruction set of the host
computer with little time penalty by apply-
ing threaded code. Using the compiler,

one may easily extend the Forth instruc-

tion set to suit one’s own application. As

the whole dictionary is available ali of the
time (ranging from virtual-machine in-
structions to <BUILDS ... DOES>
structures) the programmer can tackle low
or high-level problems, such as i‘o driving
or word processing, with equal ease and

_efficiency. The consistent nature of the.

compiler and text interpreter allow easy

interactive testing of code before it is com-

piled. Reverse-Polish notation simplifies-
the compilation process and allows it to be

completed in one pass in a small memeory.

Virtual memory and vocabularies further

enhance Forth by offering infinite data -
space and bettér control of the application
software respectively. However, shortcom-
ings of the language may prevent it from
being applied to larger computers where
its space-saving features are less useful.
But it will continue to find many applica-
tions in small and interactive systems and
real-time applications including hardware
simulation, video games and test-equip-
ment control.

References

8. M. McNeil, A hashed dictionary search
method, FORML. ’81 papers, FIG.

9. T. Dowling, Hash encoded Forth Fields,
FORM *81 papers, FIG.

10. K. Schleisiek, Separated heads, Forth
Dimensions, yol. 12, no 5, pp. 147-130, FIG,
11. D. Petty, Utilizing vocabularies, FORML
’81 papers, FIG.

12.]. Cassady, Towards a 79-Standard Fig-
Forth Romable Vocabulary and Smart
FORGET, FORML 81 papers, FIG.

13, G. Shaw, Executable Vocabulary Stack, -
FORML ’81 papers, FIG.

14, . Gilbreath, A. high-level Benchmark,
Byte, Sep. 1981, pp.180-196 {for algorithm and
performance data see Byte, Jan, 1983),

. 15, M, Jesch, High-level floating point, Forth

Dimensions;, vol.IV, no. 1, pp.6-12. NV

61

