Selecting a probessor to suit the fénguage, and control structures are subjects of Brian
Woodroffe’s second article illustrating why he designed his computer around Forth.

Forth’s spead is directly related to how
efficiently the computer can execute the
NEXT operation. The Table shows how
NEXT is coded for some popular eight-bit
microprocessors; the 6809 processor exe-
cutes the operation quickly so a NEXT
operation may be included at the end of
code routine. This improves performance
since the ‘TMP NEXT’ operaticn needed
for most processors is avoided — in stark.
contrast to conclusions drawn _from one
manufacturer’s benchmark tests’.

NEXT is the virtual-machine insiruc-
tion fetch so the choice of a processor to
run Forth on should be dominated by
speed and memory costs of the NEXT
operation. Further, 6809 registers exactly
martch those required for Forth as can be
seen in List 2, Machine code in the host
computer represents the Forth machine,
the Y register taking on the role of the
Forth program ccunter. Following
examples of simulating the virtual
machine, in 6809 machine code, confirm
that this processor is well suited to Forth.

The stack

So far, only the control mechanism by
which Forth rransfers control from one
word to the next has been described, but
the language must also control and mani-
pulate data. This, too, is done by means of
a stack, but this storage area is known as a
data stack, as opposed to the one
previously described which is known as
the ‘return’ or ‘control’ stack. Separation
of the stacks simpiifies things; normally,
data and control coperations use the same

by B. W_oodroffe

stack. The stack is further broken down
into ‘frames’ with markers to denote which
part is what. In Forth all operarors, such as
the words + and AND, may remove in-
structions from the stack, destrov . them,
manipulate them and push resuits back
onto the stack many times. This has the
advantage that operators need not be toid
where their operands are, which results in
less code. A computer operating this form

of addressing is known as a zero-address -

List 2. Registers of the 6809 suit Forth
requirements,

6803 register Forth usage
S stack pointer RP return stack
pointer
U user stack pointer SP data stack
) pointer
¥ indexregister IP instruction
pointer

current c.f.a.
accumulator

X indexregister w
D accurmulator -

machine, for operand addresses are impli-

¢cit in the instruction. These words may be
in the machine code of the target computer
or determined using words already de-
fined.

Using a stack avoids problems caused by
parentheses and operator precedence. As
far as the computer is concerned the prob-
fem is solved, List 3, but programmers
used to infix notation may find postfix
notation (reverse-Polish notation) difficulr,

e.g.

¥

Tahle. Coding and performance
analysis of the Forth NEXT operation P;’f_ﬁm ;?ﬁ’; (546
for popular eight-bit microprocessors. 34+36+X 3+4)x{5+6)
Processor 6809 6800 2B0/8085 8088 6502
Code LDX 0¥+~ JMPNEXT JMPNEXT JMPNEXT JMPNEXT
JMP[0X] LDXIP LDAXE LODS AX LDY #1
INX INXB MOV BX AX LDY [IPLY
INX MOV LA MOV DXBX STAWH
STXIP LDAXB INCDX DEY
LDX 0, X iNXB JMPWORDPTR [BX] LDY[IPLY
STXW MOV H.A STAW
LDx0,X MOVEM CLC
JMPOX INXH LDAIP
MOVDM - ADC #2
XCHG STAIP
PCHL BCCL
INCIP+1
LJMP W1
Memory bytes L 17 14 11 28
Pracessor clock
cycles 14 44 &0 08 43
Normal cycle
time (ush 1 1 0.25 0.2 1
Total time (us} 14 a4 15 11.6 43
Memory-access (ns) B35 530 260(Z80} 450 650
Time for 450ns-
access memaory {ust 8 37 27 1.8 29.7
Speed relative
to 6800% 4.11 1 1.37 3.18 1.25

*Vajue rises proportional to speed.

WIRELESS WORLD NOVEMBER 1983

List 3. Some 6809-code arithmetic routines

including add, subtract and two's
complement.

“+ FDB$+2
PULUD
ADDD 0,U
STD OV
NEXT

MINUS FOB $+2
LDD #0
SUBD O,U
NEXT

@ 'FDB $+2 {fetch)
LDDb [o,U]
STDOU
NEXT

f FDB $+2 {store}
PULU X
PULUD
STDO,X
NEXT

FDBS+2
LDD o U
PSHUD
NEXT

FDB §+2
LDD 2,U
PSHU D
NEXT

FOBS+2
PULU.D X
EXGD.X
PSHU B, X
NEXT

FDB $+2 -
LEAU Z,U
NEXT

NEXT is defined as a macro instruction.

DUF

OVER

SWAP

DROFP

Parameters are also passed between
separate lists using the stack, The word
consumes as many stack elements as re-
quired and pushes back 1ts results. Some
defined Forth words for subtracting and
doubting the top of the stack respectively
are

«_"FDB DOCOL “2*”FDB DOCOL
FDB MINUS FDB DUP
FDB ADD FDBPLUS
FDB SEMIS FDB SEMIS.

Language control structures

As has been shown, Forth passes control
from one item in a word to the next and
results are calculated. These words can be
either machine-code words or pointers to
other words. How control may be diverted
to form if-then-else or repeat-umtil stiye-
tures is the following subject, starting with
an explanation of how Forth tests for true
or false conditions by simply considering a
non-zero value at the top of the data=stack
as a true condition. Bxamples of conditions
that create these flags are ‘0=", ‘0<’, *='
and ‘<<’ in the form of code words or Forth
words, as appropriate, Lists 4, 5. Diver-
sion of control is carried ocut by Forth

65

List 4. Code routines leaving a flag at stack

top.
QEQUAL FDB $+2
LDD #1 assumetrue (i.e.
Zero)
LDX 0,U++ getoperand, set
6809 flags
BEQ QE1
DECB was < >0 s0 set

Forth flag
OE1 STCDOU put back Forth flag

NEXT

FDB $+2

LDB #1 prepare true
LDAOU getsighto A
BMI QL1 -7

CLREB no, ieave false
OL7: CLRA

STDO,U

NEXT

OLESS

List 5. Forth routines leaving a flag.
= FDB DOCOL

FDB SUB

FDB OEQUAL

FDB SEMIS

FDB DOCOL
FDBSUB
FDB OLESS
FDB SEMIS
= FDE DOCOL
FDB SWAP
FDB LESS
FDB SEMIS

words BRANCH and 0BRANCH, the
former taking the next storage cell as a
branch offset and the latter branching or
not depending on the value at the top of
the stack. If the fiag is false, the threaded-
code instruction pointer, ip, is incre-
mented by the offset value contained in the
next program storage cell. When the flag is
trug, this offset is skipped and execution
. continues with the next word. Controlled
loops may also be constructed. Using ‘be-
gin . .. untl’ structures, statements be-

tween are executed so long as the flag at”

the top of the stack remains false. Iteratve
loop type structures such as ‘100 TIMES
DO’ are handled by taking initial and limit
loop indexes off the data stack and storing
them on the control stack, At the potential
end of the loop the current index is incre-
mented and compared with the limit, If
the limit is exceeded a branch is executed
as described above, otherwise the indexes
are deleted and the offset. skipped 10 con-
tinue execution, List 6.

List 6. Code for diverting control flow if the
flag at the top of the stack is false.

OBRANCH: FDBS+2 6809 code
: LDD U+ + test and delete
Forth flag
BNEOB1 <0, branchiftrue
LEX0Y getjumpoffsetin
X
LEAY ¥, X add offset
NEXT
0B1; © LEAY2,Y skip over offset
NEXT
BRANCH FDBS+2
LDX3,Y
LEAY Y, X
NEXT
‘66

: ROOTS { stack ..c b astart defining new word ‘ROOTS’ |
SWAP MINUS { .ca—b}
QOVER { .ca-ha}
BUP + { .C a8 —b 2a quicker than 2% |
/ { ~ca—-b/2a }
- ROTROT { +—h/2acasave —b/2a }
/ { .—hi2acia }
OVER DUP* { —h/2ac/a —b/2a*—b/2a |
+ { w—b/2a b**2{d4a—ajc |
DUF 0< (istop fessthan 0, ie imaginary roots? |
IF { testflag }
DROP DROP { delete partial results, send <cr><I|f> to terminal }

CR."” imaginary roots” { and print message }

real roots, send <cre><If> to tetrinal |
convert 18-bit positive number to 32 bits)

duplicate both parts of answer and get 1st result)

EL.SE
CR {
0 {
SQRT { getback square roat }
OVER OVER + {
. roots are” . { print message and first answer)
Syand” — { print message and other answer }
ENDIF { continue execution }
CR; {

List 7. Forth code used to calcuiate the
roots of a quadratic equation. The stack is
represented across the page with the top of
the stack at the right.

Using Forth _

List 7 is an example of a Forth routine for
caleulating the roots of a quadratic equa-
tion, given that the indexes are on the
stack, Forth has the shortcoming that it
only handles integer arithmetic so nen-in-

Three flow diagrams compare, from left to
right, hard code, interpretive code and
threaded code.

]

F,‘. e

Text
irterpresar

Farse next
text strng

Secrch
d:ctanary

send <¢r>=<if>> and stop compiling return to execution)

teger results will be incorrect. The
program example illustrates a number of
Forth concepts, e.g., stack manipulation,
passing parameters and terminal ourput.
Words used in the program are explained

- in the next article, as are the dictionary and

compiler,

" Reference

7. Intel iIAPX S8 Book, July 1981, appendix pp.
20-36.

N

I . i i Interoreter H
Hard Susrpubnes -nECprefive interprezive Threaded Service
code cade roJtines cace rautinag

This diagram shows the state of the outer
text interpreter/monitor and how, by
manipulating states, Forth words can
eompife, yet still have access to the
execution power of previously defined
words

i3

! Comple value
Execue Compie i Suek vawe as Ltesal
c.f e word .81 word l cfe statx in gict amary !
: i

J

WIRELESS WORLD NOVEMBER 1983

