Complementing his description of a 6809-based microcomputer, Brian Woodroffe details
the language used —~ Forth — and why he chose it, in this second series.

Forth is a language well suited to modern
microprocessors and is widely used in such
diverse applications as word processing,,
data-base management, instrument and
process control, video games and data ac-
quisition. In a kernel of less than 10Kbyte
the following features are provided

— Aninteractive system.

— A high-level compiler with all standard
control features.

— Fast execution, comparable with
machine code because of the compiler.

— The language system is largely
processor independent; only around 20%
of the code written in assembly language
need be changed to suit the computer.

— Virtual memory and application-
oriented program modules.

Further, the system may be readily ex-
tended to suit new applications because the
compiler can be modified by the user and
new data structures introduced. These fea-
tures are achieved by defining a virtual
machine which is easily simulated by any
target machine. Using ‘threaded code’,
transferring control in the host from one
virtual machine instruction to the next is
quick and easy. Instructions of the virtual
machine are used to build the monitor and
compiler. Using the monitor the user may
examine the effect of a series of Forth
instructions and using the compiler this
series may be added to the instruction set
for future use.

Background
Forth is a computer language for fourth
generation computers'. The language
would have been calied Fourth but six
letters would not fit in the IBM1130 job-
control language that its inventor, C. H.
Moore, was then working with. Today
Moore’s company Forth Inc. is foremost in
marketing FORTH for many different ap-
plications, besides the field of astronomy
where it first found favour?. QOther com-
panies such as Miller Microcomputer Ser-
vices and Laboratory Microsystems sell
their own versions of Forth but the prime
mover of Forth in the home-computer/
hobby field is the Forth Interest Group*
(FIG). They have made versions of Forth
available for many computers including
the PDP-11 and for 8080/Z80, 6800,
. 8086/8088 and 6502 processors. There are
many versions of Forth and while all are
similar no two are necessarily identical.
For example, Poly Forth, FIG Forth and
Forth 7% are all Forth but they are not the
same. They differ primarily because of
differences in the processor on which they
‘run (16 or 8 bit memory, port or memory
mapped ifo, etc.). FIG Forth will be used
in all following examples,

Forth Interest Group, PO Box 1105, San
arlos, CA94070, USA.

WIRELESS WORLD OCTOBER 1983

by B. Woodroffe

3

Forth is a collation of different sofware
concepts forming a coherent whole. As an
operating system, it is not as powerful as
most but it takes care of all terminal and
disc input and output. Small assembly-lan-
guage routines must be supplied by the
user to interface his hardware to the rele-
vant system calls. It is also possible that
memory-allocation changes may also have
to be made. Most of Forth is written in
Forth. It may seem strange that a language
may be defined in terms of itself but one
would use English words to explain the
English language. Defining the language
in this way means that programs may be
transferred between different computers
and implementations. There is a base in-
struction set which must be written in the
machine code of the host computer. This is
the only machine code required and the
process is known as simulating a virtual
Forth machine.

Most computer languages are programs
which, recognizing statements in a source
language, convert them into a target lan-
guage. Usually the source language is text
readable by humans in ASCII form and
output js machine code of the computer.
This is not always the case: cross compil-
ing results in the target code being dif-
ferent from the host computer machine
code. More exceptionally there are cases
where the machine code can only be exe-
cuted by a hypothetical computer, an

example being O-code for the language

BCPL? and P-Code for certain implemen-
tations of Pascal*. This is also the case for
Forth and the virtual-machine execution
mechanism will be explained first,

Threaded code

Explanation is simplified by visualizing a
machine-code program for the processor
concerned as a succession of subroutine
calls. These calis transfer program control
to each subroutine in turn. A stack, i.e.,
last-in-first-our list, would be the mechan-
ism by which each subroutine returns
control to the correct point in the main
program. Knowing that the main program
is solely a succession of calls it is now

possible to reduce the main program to a
list of subroutine addresses by removing
the subroutine op-code, and to have a
special program known as an address in-
terpreter to transfer control down the main
program address list. This is called
threaded code, for the main program is the
thread into and out of which the address
interpreter threads control’, List 1.

In List 1, letters A, B and C denote
machine-code subroutines, ip is the
threaded-code instruction pointer and
parentheses indicate one level of indirec-
tion. Threaded code trades the cost of the
code for each call saved for address in-
terpreter speed. In a long program the
code cost of the address interpreter will be
negligible, Further savings can be made by
replacing the subroutine return statement
by a jump to the address interpreter and
changing the address interpreter as shown
below. This releases the stack pointer used
for subroutine calls and returns. It is im-
portant that the instruction pointer can be
speedily accessed, for example by keeping
it in a processor register, so as not to slow
down the address interpreter by causing
unnecessary memory activity,

H the lists are considered to be the ac-
tions of a virtual machine then a software
routine NEXT represents the hardware
execution fetch of the virtual machine, Ina
threaded-code computer the time of in-
terpreting these lists is dominated by the
time of the NEXT operation so it is best to
run threaded code on a computer that
handies NEXT efficiently or to use
microcode,

Code routine including return
A xxx
imp NEXT

New address interpreter
NEXT: ip+1->ip
imp {ip]

indirect threaded code

The next improvement is to allow called
routines to be not just pure machine code
but also address lsts. This is done by having
a special routine that knows that the fol-
lowing data in the list are not code but
addresses that must again be interpreted.
Further, the routine must suspend interpre-
tation of the main program while interpret-
ing this new list of addresses. Return of
control to the suspended list is done using a
stack to save and restore the instruction
pointer which is similar to the machine-code
subroutine call/return operation. There
must be an equivalent code routine to return
control to the main Hlst.

Normal code routine
A: machine code

imp NEXT

73

Threaded routine
P: sp—1—>sp :
ip —>[sp] (push currentip)
#L—1—>ip (start interpreting new
list)
jmp NEXT
L. A
B
C

Return routine
[sp] —>1ip
sp+1—>sp
jmp NEXT

As most routines are likely to be lists and
not machine code this stacking method,
similar to subroutine calling, will take 2 lot
of code area. Considerable space would be
saved if there was just one copy of this
routine. The address interpreter would
normally jump to this routine but it would
also have to execute code routines. This is
done by making the first element of each
List a pointer to code rather than the code
itself. In the case of lists the pointer points
to the stacking operator but with code
routines it points to the next code address,

{code routine)

(popip)

New address interpreter
NEXT: ip+1 —>ip
lip] ->w
jmp [w]

Stacking operation

DOCOL: sp—1 —>sp
ip —>[sp]
w+l —>ip
jmp NEXT

Destacking operation

SEMIS: [sp] —>ip
sp+1 —>sp
jmp NEXT

Code routine
A: $+1 (point to next location)
XXX

jmp NEXT

List routine
DOCOL
P

Q
SEMIS

This is the equivalent of machine-code
subroutine call and return instructions. In
Forth, the stacking and destacking opera-
tions are called DOCOL and SEMIS res-
pectively. At the beginning of each address
list, the extra address introduces a level of
indirection — this is indirect threaded
code®, In Forth the lists are divided into
tWo parts, one being the code field which
points to the address and the other known
as the parameter field where the code is,
These two parts and dictionary data, to be
described, form a WORD. Code pointed
to by the code field determines how the
parameter field is interpreted. In the case
of code words, the code field points to the
parameter field. When the code field
points to DOCOL, the parameter field is
to be interpreted in a sirniiar way to a
subroutine. It is possible for the code field
to point to some other routine which may
make different use of the parameter field.
Two examples of this in Forth are DO-
CON and DOVAR. The former treats the

74

value in the parameter field as a constant
and pushes it onto the data stack, to be
described, whereas DOVAR pushes the
address of the parameter field which is
used as the storage location for that varia-
ble, To enable these routines to access the
parameter field a third register, known as
W', is required.

The address interpreter for indirect
threaded code is more complicated than
that for direct threaded code and so jt is
even more important to choose a processor
with a suitable instruction set. Surpris-
ingly for direct threaded code, NEXT can
normally be coded using the processor
subroutine-return op-code provided that
the processor uses a stack that may be
placed anywhere in memory. As the stack
pointer is pointing to the thread, the
processor must not receive interrupts for
the status cannot be saved without des-
troying the thread. NEXT for indirect

«code is more complicated as it involves an

AT N PR L5 M T S i o tmmmits e e mmm

extra level of indirection. o
Choosing a processor, stacks and language-
control structures are subjects of the next
Forth language article,

An ic, in the Forth computer switch-
mode power supply on page 61 of the July
issue was incorrectly designated the
MC3045. The correct designation is
MC3405.

References

1. C. Moore, Forth dimensiens, vol. 1, no, 6,
FIG

2. C. Moore, Astronomical Astrophysics
Supplement, 1974, vol. 15, pp.497-511

3. M, Richards, The portability of the BCPL
compiler, Software Experience and Practice,
1976, vol. 1, pp.135-146

4. D. Barron, Pascal, the language and its
implications, Wiley, 1981

5. J. Bell, Communications of the ACM , vol. 16,
no. 6, pp.370-372

6. B. Dewar, Communications of the ACM, vol.
18, mo. 6, pp.330-331

WIRELESS WORLD OCTOBER 1983

