WIRELESS WORLD, JANUARY 1979

Microcomputer design

6 — The Z80 microprocessor explained

by Phil Pittman, B.Sc. in association with NASCO Ltd

Having considered some of the
generalities of microcomputer hardware
and software in previous articles, and
also some parts of a particular practical
system, this six-part series concludes by
looking more closely at the central
processing unit — in this case the Z80
microprocessor. Although some of the
following information has been given in
previous articles (November and
December 1977; January, February and
August 1978), it is being repeated here
for completeness and greater detail.

A BLOCK DIAGRAM of the internal
architecture of the Z80 central proces-
sing unit is shown in Fig. 1. The diagram
shows the major elements in the c.p.u.
and it should be referred to throughout
the following description. First let us
look at the c.p.u. registers. The Z80
c.p.u. contains 208 bits of read/write
memory that are accessible to the pro-
grammer. Fig. 2 illustrates how this
memory is arranged into eighteen 8-bit
registers and four 16-bit registers. The
registers include two sets of six general
purpose registers that may be used
individually as 8-bit registers or in pairs
as 16-bit registers.

Special purpose registers

1. Programme counter (p.c.). The pro-
gramme counter holds the 16-bit ad-
dress of the current instruction being
fetched from memory. The p.c. is
automatically incremented after its
contents have been transferred to the
address lines. When a programme jump
occurs, the new value is automatically
placed in the p.c., overriding the incre-
menter.

2. Stack pointer (s.p.). Any portion of
external r.a.m. may be dedication as a
stack area. This is used as a method of
sequentially storing or retrieving data
on a last-in first-out (l.i.f.0.) basis. The
s.p. holds the 16-bit address of the cur-
rent top of stack. Data can be “pushed”
onto the stack, 16-bits at a time, from
specific c.p.u. registers or “popped” off
the stack into specific c.p.u. registers
through the execution of PUSH and
POP instructions. The data popped from
the stack is always the last data which
was pushed onto it. Any stack push or
pop automatically modifies the s.p. in
such a way that the s.p. always contains
the address of the current top of stack.
The stack is frequently used to save

Fig. 1. Block diagram of Z80 central
processing unit. 8-bit
data bus
Data bus

Instruction
<::’> decode
& c.pu
13 c.pu control

& system

cpu
control > .
signals

control

AN

———————f Instruction :
<:w i d register Internal data bus > alu

A4

c.pu
registers

control

+5V Gnd

Main register set

Address

T control
16-bit
) address bus

Alternate register set

Fig. 2. Arrangement of registers
in the Z80 c.p.u.

Memory locations

* Low address

Stack pointer SP

Program counter PC

Accumulator Flags | Accumulator Flags
A F A F
B C =3 &
General
D . E D’ E’ purpose
registers
H L H’ L
interrupt Memory
vector refresh
| R
Index register IX Special
purpose
Index register 1Y registers

Fig. 3. Stack operation.

Data to stack

/ Push /call

SP

L High adaress

\ Pop/return

’ Data from stack

(Points to top-of-stack;

programme counter contents before
certain types of jumps (calls) so that the
programme can later return to the same
place again by popping the old value
back to the p.c.

The stack allows simple implementa-
tion of multiple level interrupts, un-
limited subroutine nesting and sim-
plification of many types of data
manipulation. Fig. 3 indicates the
operation of the stack.
3. Two index registers (IX and IY): the
two independent index addressing
modes. An index register is used as a
base to point to a region in memory in
which data is to be stored or from which
it is to be retrieved. An additional byte is
included in indexed instructions to
specify a displacement, either positive
or negative, from this base. This mode
of addressing greatly simplifies many
types of programme, especially where
tables of data are used.

4. Interrupts page address register (I).
The Z80 c.p.u. can be operated in a mode
where an indirect call (a special type of
jump) to any memory location can be
achieved in response to an interrupt.
The I register is used for this purpose to
store the high order 8-bits of the
memory of the address. This feature
allows the interrupt service programme
to be located anywhere in memory with
absolute minimal access time to the
routine.

5. Memory refresh register (R). The Z80
c.p.u. contains a memory refresh

counter to enable dynamic memories to.

be used with the same ease as static
memories. While a discussion of
dynamic r.a.m. is beyond the scope of
this article, it is sufficient to say that
dynamic r.a.m. stores its data as charges
on capacitors. In order that this charge

does not decay it is necessary to provide
a partial address for the blocks of
memory cells, plus certain clock pulses,
within a specified minimum time. These
are the functions provided by the Z80.
The 7-bit refresh register is automati-
cally incremented after each instruction
fetch. The data in the refresh counter is
sent out on the lower portion of the
address bus along with a refresh control
signal while the c.p.u. is decoding and
executing the fetched instruction. This
mode of refresh is totally transparent in
that it does not slow down the c.p.u.
operation. The programmer can load
the register for testing purposes, but
this register is not normally used by the
programmer.

Accumulator and flag registers

The c.p.u. includes two independent
8-bit accumulators and associated 8-bit
flag or status registers. The accumula-
tor holds the results of 8-bit arithmetic
or logical operations while the flag or

status register indicates specific condi-"

tions for 8- or 16-bit operations, such as
indicating whether or not the result of
an operation is equal to zero. The pro-
grammer selects the accumulator and
flag pair with which he wishes to work
with a single exchange instruction so
that he may easily work with either
pair.

General purpose registers

There are two matched sets of general
purpose registers, each set containing
six 8-bit registers that may be used

Fig. 4. Pin numbers and functions in the
Z80. The abbreviations are explained in
the text.

System control

c.p.u. control . 16
IN ——17-
N] ——

BLCR(O) ———
c.p.u. bus control { BUSRQ

280 c.p.u.

L Address bus

Data bus

WIRELESS WORLD, JANUARY 1978

individually as 8-bit registers or as 16-bit
register pairs by the programmer. One
set is called BC, DE and HL while the
complementary set is called BC’, DE’,
and HL'. At any one time the program-
mer can select any one set to work with
through a single exchange command
for the entire set. In systems where a
fast interrupt response is required, one
set of general purpose registers and an
accumulator/flag register may be pre-
served for handling this very fast
routine. Only simple exchange instruc-
tions need be executed to go between
the routines. This greatly reduces inter-
rupt service time by eliminating the
requirement for saving and retrieving
register contents in the external stack
during interrupt or subroutine proces-
sing. These general purpose registers
are used for a wide range of applications
by the programmer.

Arithmetic and logic unit (a.l.u.)
The 8-bit arithmetic and logical in-
structions of the c.p.u. are executed in
the a.l.u. Internally the a.l.u. com-
municates with the registers and the
external data bus or the internal data
bus. The type of functions performed by
the a.l.u. include: add, subtract, logical
AND, logical OR, logical exclusive OR,
compare, left or right shifts or rotates,
increment, decrement, set bit, reset bit,
and test bit.

Instruction register and c.p.u.
control

As each instruction is fetched from
memory, it is placed in the instruction
register and decoded. The control sec-
tion performs this function and then
generates and supplies all of the control
signals necessary to read or write data
from or to the registers, control the a.l.u.
and provide all required external con-
trol signals.

External signals

The Z80 is a single chip c.p.u. packaged
in a standard 40-pin dual-in-line pack-.
age. Fig. 4 shows the functions which
are brought out to the external pins of
the device while Fig. 5 shows how the
device fits into the microcomputer
circuit. All outputs from the c.p.u. with
the exception of M1, RFSH, HALT and
BUSAK have a three-state capability.
With the exception of the data and
address buses all signals have an active
low state. The following paragraphs
explain the various signals and connec-
tions shown as code names in Fig. 4 and
Fig. 5.

Address bus (AgA,;). Pins Ay-A 5 con-
stitute a 16-bit address bus. The bus
provides the address for memory (up to
64K bytes), data exchange and for i/o
device data exchanges. 170 addressing
uses the eight lower address bits to
allow the user directly to select up to
256 input or 256 output ports. A is the
least significant address bit. During
refresh time, the lower seven bits con-
tain a valid refresh address.

WIRELESS WORLD, JANUARY 1979

Data bus (Dy-D). The 8-bit bidirectional
data bus is used for data exchanges with
memory and i/o devices.

Machine cycle one (M1). This indicates
that the current machine cycle is an
instruction fetch cycle.

Memory request f%l'ﬁEQi. The memory
request signal indicates that the address
bus holds a valid address for a memory
read or memory write operation.
Input/output request (IORQ). The
input-output request signal indicates
that the lower half of the address bus
holds a valid i/o address for an i/o read
or write operation. An_IORQ signal is
also generated with an M1 signal when
an interrupt is being acknowledged to
indicate that an interrupt response vec-
tor (address) can be placed in the data
bus by the interrupting peripheral. In-
terrupt acknowledge operations occur
during M1 time while i/o operations
never occur during M1 time.

Read (RD). The “read” pulse indicates
that the c.p.u. wants to read data from
memory or an i/o device. The addressed
i/o device or memory should use this
signal to gate data onto the c.p.u. data
bus.

Write (WR). The “write” signal indi-
cates that the c.p.u. data bus holds valid
data to be stored in the addressed
memory or i/o device.

Refresh (RFSH). The “refresh” signal

indicates that the lower seven bits of the.

address bus contain a refresh address
for dynamic memory and the current
MREQ signal should be used to do a
refresh operation on all dynamic
memories.

Halt state (HALT). The HALT output
from the ¢.p.u. indicates that a “halt”
software instruction has been executed.
The c.p.u. remains halted until reset or
interrupted. During a halt, refresh
activity is maintained.

Wait (WAIT). The “wait” input may be
used to indicate to the c.p.u. that the
addressed memory or i/o devices are
not ready for a data transfer. Additional
one clock cycle timing states are
generated for as long as the “wait”
signal is active. This signal allows any
speed of memory or i/o device to be
synchronised to the c.p.u. o
Interrupt request (INT). The “interrupt
request” signal is generated by i/o de-
vices. A request will be honoured at the
end of the current instruction if the
internal software controlled interrupt

Fig. 5. How the Z80 m.p.u. is used in the
microcomputer, showing address and
data buses and other associated logic.

enable flag is enabled. When the c.p.u.
accepts the interrupt, an acknowledge
signal (IORQ) during M1 time) is sent
out at the beginning of the next.in-
struction cycle. The c.p.u. can respond
to an interrupt in three different modes
that are selected by software instruc-
tions.

Non-maskable interrupt (NMI). The
non-maskable interrupt request line has
a higher priority than INT and is always
recognised at the end of the current
instruction, independently of the status
of the interrupt enable flag. NMI
automatically forces the Z80 to restart
at memory address 0066 hex. The pro-
gramme counter is saved automati-
cally in the external stack so that the
user can later return to the programme
that was interrupted.

Reset (RESET). A reset forces the pro-
gramme counter to zero and initialises
the c.p.u. e

Bus request (BUSRQ). The “bus requ-
est” signal is used to request the c.p.u.
address bus, data bus and three-state
output control signals to go to a high
impedance state so that other devices
can control these buses. The request
will be granted as soon as the current
c¢.p.u. machine cycle is completed.

Bus acknowledge (BUSAK). “Bus ac-
knowledge” is used to indicate to the

int

VNV \m— +5V
1k

MREQ T19 741532
A 15 ‘ME MORY gExt
MREG A5 ” SELECT’
A14
Az B MEMEXT
An 2 0-7—--—>G
74L.5139 oS VDUSEL
W K 3 b3 5
40 2 4
A0 D
28 | RFsn Ay 122
38
24 | — "8
WAIT A,
36
A
27 § — A 35
M 5 Address
A4 34 bus
780 A 33
c.pu 3
A 32
2
3
i 23 | —— A 30
BUSAK <—_-——I— BUSAK Ao J
'PORT -,
» 14 |13 741532 SELECT }int.
Vee +5V 15
7415139 5 i O = O [OEXT
BUSRG 25 } 8Usra Gnd. |29 k o T B
BUSRQ 12 I im 9
+5V >
10k H B A
7 —— L20 = iORO
TV J——— v JORG IORG
|G 2™ , +5V
0B, 14 75 |2 RD 1 K7
(0] 15 12 +5V A o]
De, B L s WR 741500
082 P IN _t—'\/-—\/\/——viNT 330 =
Databusq O°3 7 6 ok o S\ +5V
DB, 0] . 4k7
085 S is - c.p.u. clock
DB 10 150 7406
Dae 13 HALT 18
7 RESET /7
% - < +5V
< AT

requesting device that the c.p.u. address
bus, data bus and control bus signals
have been set to their high impedance
state and the external device, e.g. the
d.m.a. controller, can now control these
buses.

Clock (I). The Z80 c.p.u. requires a
single phase t.t.1. square wave clock for
timing control. The frequency of this is
2.5 MHz for the standard Z80 or 4.0 MHz
for the Z80A.

As shown in Fig. 5 the c.p.u. clock is
driven from a conventional t.t.l. buffer
with a 3302 pull-up resistor, as required
by the package. The input to the buffer
can be selected from points on the video
r.a.m. frequency divider chain (August
issue, p.56), which is driven from a
16MHz crystal. A link has been provided
to allow the clock frequency to be set to
1, 2 or 4eMHz.

The logical design of the microcom-
puter has been arranged to exploit the
non-maskable interrupt facility of the
Z80, mentioned above, for a very special
purpose — to provide a single step ac-
tion for programme development work.
By utilising external logic to interrupt
the processor a fixed number of M1
cycles after a known command has
been executed, the execution of the
programme can be halted by causing
the interrupt to occur during a particu-
lar instruction. The software arranges
successive instructions in a programme
to be interrupted, and immediately after
the interruption all major registers are
mapped into the video r.a.m. (August
1978 issue) and are consequently dis-
played on the tv set. The software will
then wait for a specific keystroke to
move the next instruction into the in-
terrupting position. All this is necessary
because instructions can be of differing
lengths, and unless a huge search table
is provided to establish the lengths of
each of the 158 different Z80 instruc-
tions, the software has no other means
of “knowing” which bytes are instruc-
tions, which are data and which are
operands.

The particular method chosen for this
system is to cause a non-maskable
interrupt on the fourth M1 cycle after
the low-to-high transition of bit 3 of
port 0. The counting and blocking of the
interrupt is performed by 74LS74 inte-
grated circuits and associated gates.
This system is also reset by the c.p.u.
reset signal.

The instruction set

A previous article in this series has
outlined the various groups of instruc-
tions constituting the Z80 instruction
set. The following paragraphs provide
more detail on the facilities offered by
the instruction set, although it is not
possible to give full descriptions in the
space available.

Load and exchange. These are the main
instructions used for transferring data
around the system between registers
and memory locations. Any 8-bit quan-
tity may be freely moved around by

Desired starting address
Interrupt pointed to by:
Service
Routine Low order 1Register | 7 bits from o
Starting High order contents | peripheral
Address
Table L

Fig. 6. Interrupt response.

utilising one of a variety of addressing
modes with the basic “load” (LD) in-
struction. Register to register transfers
are the simplest but in a register-to-
memory or memory-to-register opera-
tion the memory address may be pro-
vided in one of a number of ways. The
data may be part of an instruction, in
which case it is fetched from the pro-
gramme memory in the normal way.
Alternatively, a 16-bit data memory
address may be provided as part of the
instruction. A common method of ad-
dressing data memory with the Z80 is to
make use of the various 16-bit registers
(IX, 1Y, BC, DE, HL) to contain data
addresses.

Sixteen-bit quantities may also be
transferred by the Z80 in a single in-
struction. For example 16-bit data to be
placed in a 16-bit register may be in-
cluded as part of the instruction, or the
first address at which a 16-bit register
pair of values is to be transferred bet-
ween may be included in an instruction.
Also any 16-bit register (excluding s.p.)
may be pushed or popped on or off of
the external stack. Exchange instruc-
tions allow the selection of either reg-
ister bank or accumulator and also
include various 16-bit register swaps.

Block transfer and search. An ex-
tremely powerful set of block transfer
instructions exist in the Z80 for moving
a block of data of any size from one
memory area to another in a single
instruction. All of these instructions
operate with three registers: HL points
to the source location, DE points to the
destination location, BC is a byte
counter. After the programmer has in-
itialised these registers a single instruc-
tion can transfer a byte from the loca-
tion pointed to by HL to the location
pointed to by DE. These two points are
then either incremented or decre-
mented depending on the instruction
being used, and the byte counter BC is
decremented. The next byte is then
transferred, and so on until BC=0.

The block search instructions will
search a given memory block for a
specific data value with a single in-
struction. Again HL is used as a memory
address pointer and BC is used as a byte
counter. The accumulator is used to
contain a copy of the value to be
searched for. When the search instruc-
tion is executed it will sequence through
the memory, updating HL and BC until
it either finds a match with the accum-
lator contents or BC reaches zero.
Arithmetic and logical. The Z80 is cap-

WIRELESS WORLD, JANUARY 1979

able of performing a wide range of 8-bit
and 16-bit arithmetic and logical opera-
tions, as listed earlier. In. all of these
instructions except increment and de-
crement, the specified 8-bit operation.is
performed between the data in the
accumulator and the specified source of
data. This source may be any of the
c.p.u’s 8-bit registers, memory address
by (HL), (IX+d) or (IY+d) or
“immediate” data contained as part of
the instruction. The result of the opera-
tion is placed in the accumulator, with
the exception of the ‘““‘compare” in-
.struction which leaves the accumulator
unaffected. All of these operations
affect the flag register as a result of the
specified operation.

The facilities of the flag register and
instruction set allow arithmetic opera-
tions for multiprecision b.c.d. numbers,
multiprecision signed or unsigned
binary numbers, and multiprecision
two’s complement signed numbers.

A group of 16-bit arithmetic instruc-
tions allow various operations between
the Z80’s 16-bit register, frequently
using HL as a 16-bit accumulator. These
simplify address calculations or other
16-bit arithmetic operations.

Bit manipulation. The ability to set,
reset or test individual bits in a register
or memory location is needed in almost
every programme. These bits may be
flags in a general purpose software
routine, indications of external control
conditions or data packed into memory
locations to make memory utilisation
more efficient.

The Z80 has the ability to set, reset or
test any bit in the accumulator, anyf
general purpose register or any memory
location with a single instruction.

Jump, call and return. A “jump”,is a’
branch in a programme where the pro-
gramme counter is loaded with the
16-bit value specified -by one of a
number of available addressing modes.
The “jump”’ group has several different
conditions that can be specified to be
met before the jump will be made. If
these conditions are not met, the pro-
gramme merely continues with the next
sequential instruction. The conditions
are all dependent on the data in the flag
register. Jump addresses may either be
determined from information contained
as part of the instruction or from certain
of the c.p.u.’s 16-bit registers. The latter
capability allows programme jumps to
be a function of previous calculations.

A “call” is a special form of jump
where the programme counter contents
are pushed onto the stack (addresses by
the stack pointer register) before the
jump occurs. A “return” is the reverse
of a “call”, in that the value on top of the
stack is popped directly into the p.c. to
form a jump address. The “call” and
“return’’ allow for- easy handling of
subroutines and interrupts.

Input/output. The transfer of data bet-
ween the microcomputer and the
peripheral devices is accomplished via
the c.p.u. 8-bit registers with the aid of

WIRELESS WORLD, JANUARY 1979

instructions from the i/o group. An
eight-bit port address may be specified

either as part-of the instruction or as the

contents of register C. Special block i/o
instructions of the Z80 allow the
transfer of complete blocks of data
directly between an i/o port and
memory with a single instruction simi-
lar to those for block memory moves.

Flags. Each of the two Z80 c.p.u. flag
registers contains six bits of informa-
tion which are set or reset by various
c.p.u. operations. Four of these bits are
testable; that is, they are used as condi-
tions for jump, call or return instruc-
tions. For example, a jump may be
desired only if a specific bit in the flag
register is set. The four testable flag bits
are:

‘1. Carry flag (C). This flag is the carry
from the highest order bit of the accu-
mulator. For example, the carry flag will
be set during an add instruction where a
carry from the highest bit of the accu-
mulator is generated. This flag is also
set if a borrow is generated during a
subtract instruction. The shift and
rotate instructions also affect this bit.

2. Zero flag (Z). This flag is set if the
result of the operation loaded a zero
into the accumulator. Otherwise it is
reset.

3. Sign flag (S). This flag is intended to
be used with signed numbers and is set
if the result of the operation was
negative. Since bit 7 represents the sign
of the number (a negative number has a
1in bit 7), this flag stores the state of bit
7 in the accumulator.

4. Parity/overflow flag (P/V). This
dual purpose flag indicates the parity of
the result in the accumulator when
logical operations are performed, and it
represents overflow when signed two’s
complement arithmetic operations are
performed. The Z80 overflow flag indi-
cates that the two’s complement
number in the accumulator is in error

since it has exceeded the maximum'

possible (+127) or is less than the mini-
mum possible (—128) number that can
be represented in two’s complement.
There are also two non-testable bits
in the flag register. Both of these are
used for b.c.d. arithmetic. The “half
carry” (H) flag is the b.c.d. carry or
borrow from the least significant four
bits of the a.l.u. This is examined by the
Z.80’s special ‘“decimal adjust accumu-

lator” instruction used when perfor-’

ming decimal arithmetic. The “subtract
flag” (N) is also used by the decimal
adjust instruction to indicate if the
previous arithmetic instruction was an
addition or subtraction.

The flag register can be accessed by
the programmer and has the following
format:

[s[z] |u] [prv]n]c]

Interrupt response. The purpose of an
interrupt is to allow peripheral devices
to suspend c.p.u. operation in an orderly
manner and force the c.p.u. to start a

peripheral service routine. Usually this
routine is involved with the exchange of
data or status and control information,
between the c.p.u. and the peripheral.
Once the service routine is completed,
the c.p.u. returns to the operation from
which it was interrupted.

The Z80 has two interrupt inputs, a
software maskable interrupt and a non-
maskable interrupt. The non-maskable
interrupt (n.m.i.) cannot be disabled by
the programmer and it will be accepted
whenever requested by a peripheral
device. This interrupt is generally
reserved for very important functions
that must be serviced whenever they
occur, such as impending power failure.
When the Z80 receives a non-maskable
interrupt it performs an automatic sub-
routine call to a predetermined memory
address (0066 hex).

The maskable interrupt (INT) can be
selectively enabled and disabled by the
programmer. This allows the program-
mer to disable the interrupts during
periods where his programme has
timing constraints that do not allow it
to be interrupted. The Z80 can be pro-
grammed to respond to maskable inter-
rupts in any one of three possible
modes.

~ Since the Z80 was evolved from the

8080A microprocessor, i.e. the 8080A’s
instruction set and internal register
organisation is a sub-set of the Z80’s,
one of the Z80’s interrupt modes is
identical to that of the 8080A. In this
mode, when the c.p.u. acknowledges an
interrupt, it expects some external
hardware to supply an instruction to the
data bus. The c.p.u. then executes this

‘(usually a jump or call) rather than

getting the next instruction from the
programme memory. This means that
an 8080A can easily be replaced by a Z80
in a system without necessarily
modifying the interrupt system, es-
pecially as 8080A programmes are
upward compatible, at the binary
machine code level, with the larger Z80
instruction set.

For simple interrupt requirements the
second mode of Z80 interrupt response

is quite attractive. In this mode, when- .

ever an interrupt is accepted the c.p.u.
performs an automatic subroutine call
to a predetermined address (0038 hex).

The third mode of Z80 interrupt res-
ponse is the most powerful. In this mode
the interrupting device is required to
identify itself by supplying an 8-bit
number (vector) to the c.p.u. when the
interrupt is acknowledged. (Note that
the Z80 activates both M1 and IORQ
simultaneously to signify an interrupt
acknowledge cycle.)

With this mode the programmer
maintains a table of 16-bit starting ad-
dresses — one for every interrupt service
routine. The table may be located any-
where in memory. When an interrupt is
accepted, a 16-bit pointer must be
‘formed to obtain the desired interrupt
service routine starting address from
the table. The upper eight bits of this
pointer are formed from the contents of

87

the c.p.u.’s I register, which must have
been previously set up by the program-’
mer. The lower eight bits of the pointer
are supplied by the interrupting device.
Using the pointer to the table, and the
table contents, an indirect call can be
made to any memory location. This is
illustrated diagrammatically in Fig. 6.
All of the devices in the Z80 peripheral
family are designed to operate in this
mode of interrupt response. The pro-
grammer is able to specify a unique 8-bit
interrupt vector to each peripheral,
which it supplies to the c.p.u. during
interrupt acknowledge. Interrupt
priority is established by a ‘“‘daisy-
chain” connection through the
peripheral devices.

References

1. The Zilog Z80/Z80A c.p.u. Technical
Manual.

2. The Zilog Z80 Assembly Language Pro-
gramming Manual.

Later this year we hope to publish a complete
constructional design for a scientific com-
puter using the Z80 m.p.u. as a processor.

WW diary overseas

The publishers of the Wireless World diary,
T. J. & J. Smith of London SW19, do not
supply direct to the public. If you want a copy
you will have to get a bookseller, such as W.
H. Smith, to order through the trade. If you
live abroad from the UK, Wireless World can
supply you. Send £1.50 to WW Diary, Room
25, Dorset House, Stamford Street, London
SEl 9LU. The latest edition includes new
sections on standard frequency transmis-
sions, time code transmissions, UK broad-
casting stations, and enlarges the address
and telephone number section for electronics
organisations by 75%.

Microelectronics design

Designing with single-chip microcomputers
is the subject of one of the papers to be
presented at the Microsystems '79 con-
ference and exhibition this year, January 31
to February 2. Other topics covered are
bubble memories, microprocessor inter-
facing, architecture of 16-bit processors, high
level languages and costing m.p.u. software.
The event will be at the West Centre Hotel,
Lille Road, London SW6 from 09.30 to 18.00
hours each day. Conference details from IPC
Science and Technology Press Ltd, Westbury
House, Bury Street, Guildford, Surrey GU2
5AW (Tel: 0483 31261). Exhibition details
from lIliffe Promotions Ltd, Dorset House,
Stamford Street, London SE19LU (tel: 01-261
8000).

