74

WIRELESS WORLD DECEMBER 1980

Floppy disc

syst;m “for the

scientific computer — 2

Interfacing a disc drive to the controller

by J. H. Adams, B.Sc., M.Sc.

This interface has been designed to
operate with the Data Recording
Equipment model 7100 8in disc drive,
but should be easily adapted to suit
others. The main advantage of an 8in
drive over a 5%in system is its greater
storage capacity, 77 tracks of
3%Kbytes each using the IBM format
described in part one, compared with
35 tracks of 2VsKbytes each. The
disadvantage is greater cost. This
concluding article describes how the
drive is matched to the floppy-disc
controller, and illustrates the salient
points to check when considering
other drives.

Whichever drive is used, the length of the
cable, flat or twisted pairs, between the
drive and the interface must be kept as
short as is reasonably possible, and
separate from the power cables. Each
power cable should have its own return
and there must be a good connection
between the frame of the drive and the case
of the computer.

When considering the signals to and
from the drive, their polarity and timing
must be examined. Most drives use the
active-low principle for their inputs and
outputs, i.e. a true state is logical zero
(represented by 0<V=<0.4V) and a false
input is logical 1 (represented by
2.5V<V<5.25V). Open collector drivers
are generally used for outputs, and low
value pull-up resistors on the inputs
provide a full 5V swing and keep the line
impedance down, both of which improve
noise immunity. One implication of this
arrangement is that, to pull a line to zero,
the driving device will need to sink the
current supplied by the receiving gate and
by the pull-up resistor, typically 40mA.
For a logical 1, no current is required from
the driving device. The controller i.c.
signals are mostly active-high, so inverters
are used as receivers on all inputs except IP
(index pulse) and WPRT (write protect),
and 220() pull-up resistors are used with
high current-sinking, inverting, open-
collector drivers on the five active outputs.
If a drive with some active-high inputs is
used, the equivalent non-inverting buffers,
7407, or pairs of 7406 in series must be
used. Note that ordinary t.t.l. is used for
driving the interface cable because the L
and LS series do not have the required
current-sinking capacity. Table 3 gives
some timing information for the 5Yin
drive, the 7100 and the WDI1771
controller.

When used with an 8in unit, the
WD1771 must be clocked at 2MHz, whilst
with a 5%in disc 1MHz is used. This is
necessary to meet the standard data rates
used for the two sizes, and results in the
doubling of all pulse timings for the i.c.
when used with the smaller disc. There are
other timing requirements connected with
the application of power and selection of
the drive, but these can be allowed for in
the programming of the computer.

Stepping time

Most drives offer the option of keeping the
head permanently loaded against the disc.
This speeds operations by eliminating

head-loading delay, but does increase wear _

on the head and disc. In this operating
system, the head is only loaded when
necessary which is usually after it has
stepped to the track required. Settling
time is irrelevant if it is less than the head
loading time. The interval between
stepping pulses is programmable by the
bottom two bits of the Step instruction
byte as described on page four of the data
sheet. With the 7100 drive the fastest
(6ms) rate can be used, whereas with the
SV4in unit, the drive can only just keep up
with the slowest stepping rate. Stepping
rate is probably the most critical timing
factor because if a drive cannot step as fast
as the controller’s slowest rate, the two are
virtually incompatible.

Stepping pulse

Virtually all drives can step on the pulse
provided by the 1771. However, one
exception found by the author is an
obsolete version of the 7100. As this unit

Table 3. Timing information for disc drivers
and the controller.

may still be available, the interface has
been designed to operate with it and the
current version.

The obsolete 7100 is most easily

‘ recognised by the absence of three d.i.l.

sockets and header plugs next to the edge
connector on the p.c.b., and the presence
of two power resistors and three power
transistors instead of one resistor and four
transistors near the opposite corner to the
edge connector. To allow compatibility, a
monostable stretches the stepping pulse to

10ps.

Head-loading time

Ten milliseconds after the HLD (Head
Load) output of the controller becomes
active (20ms for the 5%in disc), the HLT
(Head loaded test) input is sampled and
when it is low the controller proceeds. If
the combined loading and settling time for
the head is less than 10ms, this input can
be wired low. If the disc-drive electronics
provide a head-loaded and ready signal,
this can be connected to HLT. If neither is
true, as it is for both of these drives, HLD
should trigger a monostable to produce the
necessary delay before HLT becomes low.
Because most drives will need this
monostable if they are to be used with the
head normally un-loaded, it is important to
establish the total delay before the head is
ready for use, i.e. the loading and settling
time. Note that one value cannot be
inferred from the other by comparing the
stepping rate figures for the two drives.

Drive options

Most drives offer wiring options, and in
this system one for direct control of head
loading by the controller is used. To select
this option on the current model, remove
the link joining pins 13 and 14 on plug PP2
(the middle one of three referred to earlier)

5%in drive WD1771 DRE 7100 WD1771
@ 1MHz 8in drive (@ 2MHz
Track to track 40 + 10ms programmable 4 + 14ms programmable
stepping + to 12, 20 or 40ms to 6, 10 or 20ms
settling times
Stepping 1us min. 8us 600ns 4us
pulse width (10us on older
units min.)

Head load and 75ms HLT sampled after 30ms HLT sampled after

settling time

required

20ms, therefore
monostable is

10ms, therefore
monostable is
required




WIRELESS WORLD DECEMBER 1980

and join pins 3 and 14 together. On the
obsolete version, remove the short wire
link joining the points marked HL and SI
and connect a wire from HL to the pad at
the end of the p.c.b. track coming from
the edge connector tab numbered 18.

This change allows the controller to
drive the head-load circuit through the
previously unused pin 18 on the edge
connector. The current and obsolete units
should now be interchangeable.

System software

The software in table 4 is not a full disc
operating system, but it illustrates the
basic functions required to position the
head, read and write records of any length
from 128bytes to 256Kbytes with error
checking, and to re-format corrupted
nacks. With the drive and interface
connected to the computer, move the head
towards the centre of the drive by turning
the stepping motor by hand. Apply mains
to the motor and then switch on the
computer. Put a disc into the unit and
close the door. If the system is working,
the head should quickly step to the
outermost track 00 because the charging
delay, caused by the RC network on pin 19
of the controller i.c., holds that pin
(master reset) momentarily low in a similar
way to the circuit used on the Z80. One of
the actions which takes place during the
resetting sequence is a Restore command,
which moves the head out in this way. If it
doesn’t, check that the wiring is correct. If
it steps out but does not stop, check that
the track 00 line from the drive to the
controller functions. With the software
loaded, RUN 1D00 and then READ
space. In response to the prompts
DESTINATION: TRACK: SECTOR:
NUMBER OF SECTORS: type 8200 40
space 0 space 8 space respectively. The
head should move in to track 40 and load 8
sectors (1Kbyte) of data from the disc,
starting with sector 0 to computer
locations 8200 to 85FF, i.e. onto the v.d.u.
With the IBM formatted disc, these should
appear as percentage or proportional
symbols. :

At the end of the read, which should
take less than one second, the head should
release from the disc and READY occur.
If a reading error occurs, the computer will
attempt to re-read the particular sector up
to twenty times. A corruption should be
evident by rubbish appearing on the
v.d.u., the controller recognises it by
computing the CRC from a permutation of
the data from the sector and comparing it
with the pre-recorded CRC. Each sector
takes up two lines on the v.d.u. If the
corruption begins in a line and keeps
changing, the data is corrupted. If the
reading process seems to stop at the end of
a line, the controller is having trouble
recognising the Ident Field for the track or
sector and, therefore, the track needs to be
re-formatted (described later). With an
undamaged disc most reads are successful
first time, but if the operation fails for the
20 times that it is attempted, the message
ERROR AT TRACK XXX SECTOR
XXX appears. To force an error into the
system and observe this feature, try

1De@
ID1@
1D2e
1D31®
1D4g
1D56
1De@
1070
1D6E
1090
IDAE
1DBE
1DCe
1DD@
IDE#
IDFE
lEC@
IE1@
lE2E
IE3k
lIE4€
lES®
IE€E
IE7E
IEEE
1E9 @
1EAE
IEBE
lIEC@
IEDE
IEEE
IEFL

. 75
ED 5E 3E 1D ED a7 LD 2 E4 1L LB €5 LE IL 3E FF
D3 AZ FB 7¢ 7¢ L8 7€ FLE £t 2@ FE LB CD C€ 3 FE
12 2¢ 21 CD €1 €2 L4 k5 13 14 k9 GE Ll 14 9 LF
GLE 3A 20 1L CC DE £3 CD Cé 3 CD L I 3E E7 CD

57 1E 18 F9 FE 17 2¢ 33 CD €1 k2 13 EF 15 lc e3
5 3A 2€ 1D CC DE 623 CD Cé b3 CD FL Il 3E 71 3&
F3 1D 3E 57 D3 AL FB 7€ JE F5 Cl1 Cl CC 57 1E 18
EC 1A 2F D3 B 13 FE F9 7¢ lo EL FE LE Z& €4 CD
ce LE. 79 3¢ A 1D 21 Wb CL k€ 2B Ge FF €3 1t FB
LE BE 3€ ke €3 lv FB 3¢ FC 23 k€ 1A 36 FI 23 l&
FE 11 wl 38 LE 1A ke CE 3€ Kk €3 1w FBE 3€ FE 2

72 23 3€ LW €3 73 23 3¢ kb €3 G€ F7 £3 ke 11 3¢

e 23 1t B 3€ FB 23 k¢ Bk 3¢ ES £ le FE 3€ F7
23 k€ 1B 3¢ FF 23 l& FB IC D 2k CA L€ kk 3€ FF
23 1€ FE C7 FF FF FF LE 1D 2F 12 13 b F9 7€ 18
72 F9 1D E7 1D CE 1D 18 F3 DB €5 &F C9 CL €1 g2

la 12 61 ¢3 LE 2A EZe 1L ChL Cé 1k LL 71 we CD Ceé
w3 CD el we 13 €5 €3 14 LF 12 3A 20 ID CD C¢ 1E
DD 71 ¢l CD Ce &2 CD €1 ‘2 kE 15 D w2 &5 lz g

LF L€ 2¢ 13 S L3 14 EF e 13 3A ze 1D CC Cé 1E
DL 71 &2 CD B9 1E 3E EB L3 Ab FB 7€ Ee 16 20 F€
E5 21 oo e 39 Ll C9 3¢z F3 1D ke 14 3E 77 D5 D3
Ak FE 7€ E€ 16 Z& 34 DI 3E 73 1€ & Il 6L 62 CD
€l €2 ¢5 12 2 bl 12 2e Ll l4a B 14 < kl &3 &B
26 1D DD 7E Lt CD DA IE CDh €1 L2 2k 13 €5 w3 14
LF 12 2 1D LD 7E &l CD DA IE C7 Cl LD 35 €2 Ca
Ee ke DD Z4 £l L 7E &1 FE 1E EZb L LD 3€ el ¢l
D 34 i 3E A3 L3 Ak FE 7¢ LT TE kb 2F '3 B LL
TE €1 ZF [3 Ee C9 7€ E¢ Lk 4F 7€ FE b CB E€ LF
47 79 L7 4F L7 L7 81 bt I& EF CS CL EA 1L CE 3L
EL 7€ 23 71 £3 77 23 Eb Cl €9 e 3e 45 FE €4 38
£S5 LA DE €4 s F7 TE A 36 €5 eC L¢f LA 1B FT C9

Table 4. System software.

Table 5. Software subroutines.

1DF9

1E57

1EC6

1EDA

1DE7

Used in READ and WRITE to convert the typed in track number, sector number and
number of sectors from decimal to binary, and then dump them into locations 1DE4
to 6 respectively using the index register. These bytes are then sent to the control-
ler, which is then told to step into this track and, by reading an indent field, verify
that the head is over the correct track. Also, by reading the CRC, verifies that the
track number has been correctly read and does not match the track register's
contents by chance. The data destination/source address is transferred from HL to
DE and, by clearing HL and adding SP to it, the contents of the stack pointer register
are loaded into HL.

Used in READ and WRITE. On entering thig_routine, the A register holds a byte
which is dumped at 1DF3 to be used by a DRQ interrupt as the lower part of the
interrupt routine address (1DE7 for READ, 1D71 for WRITE, 1DF5 for VERIFY
WRITE). 204¢ is loaded into B and DE, which holds the destination/source address, is
saved on the computer stack in case a re-read or -write is necessary. The controller
is then instructed to read a sector of data to that and succeeding locations. After the
read, at 1E63, a check is made for the correct CRC and for the existence of the track
and sector. If no faults have occurred, execution jumps to 1E9B where the saved DE
is discarded from the stack into BC and, using indexed operations, the number of
sectors byte is decremented. If this operation sets the byte to zero, an exit is made
because the READ is complete. Otherwise, the sector and, if necessary, the track
number are updated for the next sector to be read, the information is_sent to the
controller registers and another sector is read. If the operation to read the sector
fails, the starting address of the data is popped back off the stack and B is decre-
mented. If this does not reduce it to zero, a re-read is attempted and after 20
attempts execution passes to 1E6C et al and the error message appears.

Loads decimal data from the keyboard and converts it to binary in register C.
Displays the contents of A, converted to decimal, on the v.d.u.

The READ interrupt routine, called by a DRQ. This routine transfers the byte in the
controller’s data register to the Z80, inverts it to its true form, stores it in the location
pointed to by DE, and increments DE ready for the next byte. The interrupt system
in the Z80 is automatically disabled when an interrupt is accepted so that the Z80
can service the interrupting device without interference from the interrupting de-
vice itself. Standard service routines usually finish with a re-enabling of the in-
terrupt system and then a return. To ensure that the return will occur, the Z80 does
not re-enable the interrupt until it has executed the instruction after the enabling
instruction F3. This service routine does not have a return, but it uses this one
protected instruction after the F3, F9, to load HL into the stack pointer, SP, register.
SP is increased by two when the subroutine 1DF9, which loaded HL with the SP,



76

1D71

1DF5

ended and the return address was popped off the stack. When the DRQ interrupt
was accepted, the current PC (program counter) contents were pushed onto the
stack and SP decreased by two, as is normal at the calling of any subroutine.
Therefore, for the first DRQ, HL and SP are the same and F9 has no effect. The next
byte in the subroutine is a HALT, at which the ZB0 stops and waits for the second

which, when it arrives, jumps the execution back to the start of the subroutine
and pushes another return address onto the stack. When the data byte is read and
the F9 is executed, SP, which decremented when the second interrupt was
accepted, is pulled back to where it was before the interrupt occurred. Therefore
this, and all future DRQs are demoted from calls to being, effectively, simple jumps
to 1DE7. Whilst each return address is written on top of the last as the Dﬁgs
progress, the first call from the main_program remains unaltered one position
further up the stack. When all 128 DRQs have passed and the SP has been pulled
back again, the INTRQ interrupt occurs and this, having a conventional return at its
end, returns execution to the first popped address, i.e. where the original "read a
'sector” command was given. This forms a neat method of writing the main
program because it makes the controller appear as part of the main processor and,
more important, it saves time. There are only 32us during which data can be
transferred from the controller to the memory, and the Z80 made ready for the next
interrupt. If the sequence servicing the controller takes longer than this, data will be
lost and the controller will halt the reading sequence. A conventional return takes
5%us and the jump from this returning point to the “wait fora DRQ” pointrequires &
further 6us. The single F9 instruction only takes 3us, which achieves the same
purpose, but just within the 32us limit.

The WRITE interrupt routine called by DRQ. This is similar to the previous routine in
that the progress of the stack pointer is arrested by repetitive loading from HL. This
routine differs because the first twg DRQ-pushed addresses are saved, 1D68 and
1D79 respectively. When the 128 DRQs have occurred, INTRQ causes a jump to the
status reading routine after which the return occurs to 1D79 at which a jump pushes
execution on the 1D68. Here the other is popped off the stack and a new vector
byte, F5, is placed into the A register ready for the third type of DRQ.

When checking a written sector, 1E57 is used as the reading subroutine. Because
we are interested in the CRC and not the data on the disc, 1DF5 acts like 1DE7 when
handling DRQs, except that it makes no attempt to store the unwanted data and just
waits for the . When this arrives, 1DF5 returns to the point in the main

program where the CRC can be checked to see if the track just written has verified

itself.

final 6 fill sectors 0 to 5 track 41. The write

reading any sector track 77, which does
not exist! Note that spaces are required
after decimal information — the track,
sector and number of sectors, but not after
the hexadecimal destination address.

If the Read has worked type RUN
1D00, which should cause the unloaded
head to return to track 00. Next type
WRITE space, and in response to
SOURCE type 0000, for TRACK: 40
space, for SECTOR: 0 space, and for
NUMBER OF SECTORS 32 space. The
head should move in and write to track 40,
step to track 41 and continue writing, so
that the first 26 sectors fill track 40 and the

Table 6. Floppy-disc controller commands
used. The asterisked addresses are where
modifications to the software are made
when a track is re-formatted.

operation is slower because after each
sector is written it is read back and
checked for errors. As before, up to 20
attempts are made before the operation
terminates and the ERROR message
occurs. Nevertheless, it should only take a
few seconds to record the entire 4K
monitor.

Explanations of the software
subroutines are given in Table 5. To follow
the main program 1D00 to IDFC, a
disassembler such as the one given in a
recent computer newsletter is useful. The
interrupt mode 2 is set and the I register,
which is used (as described in part one) to
form the top half of the interrupt
addresses, is set at 1D and the IX index
register is set at 1DE4. The index register
is useful as a pointer to an area of memory
because any indexed Z80 instructions, i.e.
instructions prefixed by DD, will use a

WIRELESS WORLD DECEMBER 1980
byte in the instruction to say which byte

relative to 1DE4 is to be used in the

instruction. In this case byte number 00
(i.e. 1DE4 itself) stores the required track
number, byte number 01 (1DES) stores
the required sector number and byte 02
(1DES6) stores the number of sectors. The
status and data registers are read next (not
for their contents) to reset the INTRQ and
DRQ interrupt lines if they are active due
to the power-on sequence. Note that this
unit is designed to operate with the mark
III operating system, (see the scientific
computer newsletter) which contains these
same four bytes, DB,05, DB and 1D. They
are executed in the high level so that the
MMS57109 interrupts are not upset by the
disc controlled conditions. 1DOE-14
illustrates the way instructions are sent to
the controller. The instruction byte loads
into A, in this case a Restore instruction, it
is sent to the command register, the
interrupt is enabled and the Z80 is halted
to wait for the interrupt. When it arrives,
in this case a INTRQ, the computer reads
the interrupt controller byte Fl, adds it to
the 1D previously stored in the I register
and then reads in the byte at 1DF1 and
1DF2 as the address of the INTREE sub-
routine, which is 1DF9. Execution passes
to this address when the status register is
read and inverted back to a true state.

Re-formatting a disc

As well as reading and writing individual
sectors, the controller can read and write
whole tracks using the index pulse as the
start and finish of the operation. As
described in part one, even before use the
disc is fully recorded with ident fields and
dummy data. If the ident fields become
magnetically corrupted, the entire track
has to be re-recorded, or re-formatted,
before it can be used in the sector mode
again. To do this, a block of length 54K
bytes must be set up in r.a.m. and then
recorded en bloc. Assembley of this block
requires extra r.a.m. over the basic
computer’s memory and, given this, the
operating system can synthesise the track
format. I used a 32Kbyte expansion
(referred to in the computer newsletter)
and assembled this block at C000. To
accommodate other r.a.m. locations, the
byte at 1D88 must be altered. After RUN
1D00, type FORMAT space and then the
track number, in decimal, to be altered. As

continued on page 57

Address Byte Command Function

1DOF FF 00 RESTORE the head to track 00 and clear the track register.

1D63 57 AB Assuming the head is to be loaded against the disc, WRITE a single record of IBM format to the track
and sector specified by the respective registers, using FB as the data mark.

1E47 EB 14 SEEK the track specified by the data register by stepping the difference between it and the contents of
the track register. Then, by reading an Ident Field from the track, verify that it is the correct one.

*1E5D 77 88 Assuming that the head is loaded against the disc, READ a single record of IBM format from the track
and sector specified by the respective registers.

1E69 73 8C As above, but it begins by issuing the HLD, head load, signal and waiting for the HLT signal to become
active before proceeding.

1EB4 A3 5C Load the head against the disc and then STEP IN by one track, updating the track register. Perform a
verify of the track as described above.

*1D63 0B F4 WRITE TRACK. Starting at the index pulse, data is written continuously up to the next index pulse.

*1E47 EF 10 On a badly corrupted track, it is not possible to verify the head position after a SEEK, so this version of

the command omits it.




Floppy disc System continued from page 76

explained in Table 6, two controller
commands have to be altered, 1D63 to
write the complete track, and 1E47 to
delete the attempt to verify the head
position after the seek operation, as
presumably the track is being re-formatted
because it is impossible to verify on that
track.

Re-formatting is accomplished by

proceeding as with a standard Write
operation, giving the start of the block as a
source and dummy data, say 1, 1 and 1 for
the track, sector and number of sectors.
The head should move in, load itself and
write the track. After this has occured and
the head has released, the computer should
be manually reset using the Reset key or,
preferably, Control Z. |

Table 7. Sequence for a DRQ interrupt. Note that interrupts can be accepted

during LD, SP, HL, in which case the HA
tions up to and including LD, SP, HL are

(Mode 2 Interrupt) 9%z us
IN A1D 5% us
CPL 2 us
LD (DE)A 3eus
INC DE 3 us
El 2 us
LD SP.HL 3 us
HALT 2 us

302 us

LT will not be executed, but instruc-
always executed unless NMI occurs,

Data read in

Data inverted to true
Stored in memory
Move to next location
Enable interrupt

Pull back SP

Halt for interrupt




