WIRELESS WORLD, FEBRUARY 1980

43

More on the scientific computer — 2

An improved monitor

By J. H. Adams, M.Sc.

Since publication of the scientific
computer, correspondents have sugg-
ested several features to improve the
performance. This new monitor incor-
porates many of those features and
includes a general expansion of the
facilities available in BURP, including
the routines for graph plotting. By re-
structuring the interpreter four extra
functions, described in table 7, have
been fitted into the three original
e.p.r.o.ms. The demonstration programs
have been removed, but these could be
stored on tape, and the Creed 75 tele-
printer interface has been replaced by a
standard 110 baud ASR/KSR interface.
The KSR machine is now cheaper and is
fairly standard whereas the 75 may have
different speeds and encoding as I sus-
pect some readers have found to their
Ccost.

Hardware modifications

Connections for the two extra keys are
shown in Fig 3. The interface for the
teleprinter is essentially a latch as in the
original design, but this must be con-
nected to D, instead of D,. Most telep-
rinters contain an interface card for a
20mA loop or an RS-232 link. For a
current loop, the second circuit drives

the printer quite satisfactorily.

Firmware modifications

Charges to the firmware are detailed in
tables 8 and 9. Primarily, space has been
made in the first e.p.r.o.m. for three of
the subroutines originally in the second
which deal with instruction entry and.
condition testing of the MM57109. This
has been achieved by using a simpler
and shorter teleprinter interface,
eliminating the subroutine at 034E, and
trimming the low level monitor so that it
ends at 024E. This has left space in the
second e.p.r.o.m. for a new subroutine
051D which extends the old 04E6, now
047C, and together they can recognise
and deal with the new facilities. Because
these routines are quite complex, a
disassembled listing of each is given in
table 10.

The third r.o.m. is slightly briefer
because checks for ends of lines, present
in virtually all of the statement handling
routines, are replaced by 051D. The
command MOD (08BE) has been
changed so that PRINTs buried in
multi-statement lines are also changed
to WRITEs. CALLs have been read-
dressed to suit the first two r.o.ms and
CALL 042E has been replaced by the
single RST byte CF (see 0008). In the

original r.o.m., after going through the
sequence of recognition checks for en-
coded commands or, later, first words of
statements, the interpreter returns to
the command state or ignores the rest of
the line respectively, if it cannot find a
match or the generated code within the
firmware.

This is particularly useful for dealing
with REM because, being unrecognised,
such lines are ignored as explained last
month. A major change in the modified
r.o.m. provides jumps to 1C00 (at 0975)
for commands, to 1C60 (at 0AD7) for
new statements and to ID00 (at 0BDE)
for new functions. As a result REM has
disappeared but the apostrophe has the
same effect and retains the facility for
remarks.

0993 is an example of where 051D is
used solely to jump spaces between the

line number and the first word of the
statement. Therefore, it is the point to
which 051D transfers execution after
coming across an ! in the text being
interpreted. 097F pops off the stack,
increments and pushes back the C reg-
ister which is used as the line register
store and then looks for and executes
that new line. Thus, it is the point to
which 051D transfers control after
finding a ' or 8DH number in the text.
Because the computer scans the text for
line numbers whether they exist or not,
the lines in a program should be as close
together as possible (say every other
line) for the fastest program execution,
Using multiple statements avoids this
problem to some extent and can there-
fore reduce the execution time of some
programs, particularly simple ones, by
up to 20%.

Table 7. Additional facilities for the new monitor.

Outputs the number in the 57109 to 1E00 — F and tests the exponent sign. If
negative, the whole number is written to zero, if positive, the lower mantissa
exponent is drawn and used to calculate (0B72-8) where blanking should start. If
the exponent is not less the 09 (0B80-B), blanking is carried out. The number
stack in the 57109 is then collapsed by one to remove the old value (OB97) and

Outputs the number and tests as in INT. If the exponent sign is negative,
execution jumps to OB96 (OBAS) and effectively does nothing. For positive
exponents a similar sum involving the lower mantissa exponent digit is performed

029F is called which loads the refresh register into A, converts it to a three digit
decimal integer and enters it into the 57108 (this subroutine runs straight into
02AD). A pseudo-random delay (OBB8-A) based on the current v.d.u. printing
position is then called so that a second call of 029F will generate a second
number from the Z80 refresh register which is only tenuously linked to the first.
These numbers, now in the Y and X registers of the 57109, are combined
through the sequence of instructions at OBBE to give X = 1 28X +Y/16383,i.e.
a reasonably random number between 0 and 1. Note that as this uses two of the
57109 stack registers, no more than two other variables must be present in the

INT (0B64)
the new value is entered into the 57109 by a jump to 050F at OB9A.
FRAC (OBA1)
and a jump is made back to OB79 in the INT routine (OBAE).
RND (0BB4)
57109 when RND is used.
ABS (0BD3)

This simply uses the number cruncher test instruction 12 to test for a negative
number in the X register. The result of this test governs whether the instruction to
change sign, OC, is executed.

Table 8. Alterations to the first r.o.m.

024F was 03CE
02AD was 024E
0345 was 0336
0395 was 0393
03C6 was 03C4

0263 was 0260
- 02C7 was 0446
0367 was 0729
03A1 was 039F
03D1 was 0260

0282 was 058A
0326 was 0317
0374 was 0372
03AB was 03A9

029F Generates a 7-bit pseudo-random number and inputs it to the 57109.
02D1 Converts the computer 6-bit ASCII to true ASCII and prints it.

02D9 Prints a space.

02DE Prints carriage return and line feed.

02E8 Prints the contents of register A.

02F0Q Prints (A) as a two character hexadecimal byte.

0317 Prints CR, LF, the contents of HL in hexadecimal and a space

a4

Using the new facilities
In low level the first feature to be noted
is that READY does not disappear when
a command is typed in nor does the first
letter appear at the beginning of the
second v.d.u. line. This is because the
same algorithm is now used for both
high and low level word recognition.
Clashes produced in the changeover
explain the changes of COR to MOD
and PROM to PROG. To leave LOAD,
the space key is now used instead of @.
The main change which affects both
levels is that the interrupt-and-reset,
which occurred whenever any key was
depressed, has been omitted because
control can be regained by using
RESET. The “arrow” keys now revert to
standard keys, RESET enters the low
level and Control A (depressing A and
the control key simultaneously) enters
the high level. The delete key to the
right of] can be used to delete complete
bytes by one depression per byte.
Although this will cause the formatting
to go out of true during the LOAD, the
grouping by four is maintained and on
pressing the space bar at the end of the
load the format will be restored.

When loading programs in high level

r.0.m., execution jumps to OBBO. These new codes are f

language, another character Control E
is used to signify the end of LOADing or
ADDing. This allows the colon, which
was previously used for this purpose, to
 be included in printed messages etc.
without terminating the current opera-
tion. Ensuring correct format of the
input has been eased by a cursor,
although with the original monitors few

Fixing screws

WIRELESS WORLD, FEBRUARY 1980

problems will be encountered if a space
is typed when in doubt. The DEL key
backsteps and clears the last v.d.u. cha-
racter and also backsteps HL. Correc-
tions are, therefore, easily typed in, but
mistaken returns and line numbers can-
not be corrected in this way because

Fig. 3. Modifications to the keyboard
and teleprinter interface.

2376 Pin5

Underside of keyboard

2 ——CK d p——a

ak7 To teleprinter

ov

Teleprinter interface

Table 9. Firmware changes.

MM 57109 operations and will thus require some Z80 software.

and spaces, this routine will just jump spaces and return wit

to 047C. If the byte found lies between 1A and 2A it will, after;
{a) "'(052D) transfer text up to the next’" onto the v.d.u. and then jump back to the start of the subroutine to deal with

Old 04E6, O4FA-E is added to this so that when a code of less than OB is drawn from the look-up table at the end of the
or ABS, FRAC, INT, RND and any others which are not simple

Jumps spaces and then returns on bytes less than 1B and greater or equal to 2A (except for 8D). Thus, for letters, operators
h HL pointing to the first non space, i.e. 051D is a supplement

then 047C to execute the text within the parentheses until the call of 051D finds

a). As this) will have been found during the calling of 051D at 0546 and as) indicates that the original call of 051D is no

longer required, i.e. the bracketed term has been compute
call at 0546 so that a return is made to the original pointin
an expression in parentheses, the computed resultis leftin the X re

d, detection of) drops the stack pointer past the return address the
the interpreter from where 051D was called. After dealing with
gister of the 57109 and the SCII for), 29. is leftin register

If the interpreter has not yet recognised the byte it must now be at the end of the statement. Before looking fora ! “ or 8DH,

two types of statement need special attention. 1FE1 is
first word of the line. If itis 33 (i.e. aWRITE statement), executi

used in the third r.o.m. (0999) to store the code generated from the
on shifts from 0554 to 056B. WRITE lines are similar to print
played is fed to locations from 1D80 rather than to the v.d.u. 0568 sets an FF at the

end of the black used and then resets DE to 1D80 and outputs the characters up to FF on the teleprinter. After restoring AF

If the line is a LET (code 2C) the variable to which the computed value is to be assigned is drawn from its store (1FE2) and the

After dealing with these two special cases, checkin
transfer control rather than return from the subroutine and so the pointer

g of the original byte continues (0560). The remaining possibilities will
is moved down the stack, losing the previously

(e) 8DH ' oranything else, passes execution to 097F. 8D is the code for return and indicates the end of a line. " signifies that
the rest of the line is a remark which the interpreter will also want to treat as the end of a line.

Used in the above two to cover common parts and thus save space.

0400 Old 04D4 running straight into 040D

040D 0ld 0460

0467 Old 04BA

047C

051D
whatever follows.
(b)) (053B) collapse the stack and return.
{c) ((0542) call 051D to jump spaces and
A
types except that the material to be dis
and DE it returns to 0563.
contents of the 57109 X register are fed to it.
stored return address and then, after;
{d) ! (0563) execution passes to 0993.

0582-4

0589 Calls 051D as above.

0594 Old 0714.

05A9 Unchanged.

0736 Unchanged.

074A Modified 074A.

075A Old 076D.

0773

0789 Used in INT and FRAC.

07A2 Unchanged.

07AC Unchanged.

Q787 Unchanged.

07D6

Jumps text and then calls 051D and, when required (i.e. letters, operators or digits), 047C as well.

Look-up table which now includes codes for new functions (07DA/DC/E3/E9)

WIRELESS WORLD, FEBRUARY 1980

they involve internal operations by the
interpreter rather than the byte by byte
storage which takes place during lines.
The critical formatting points are LET
lines where the variable following let
must be followed immediately by the
equal sign, and IF lines where, when a
variable precedes the comparison sign,
there must be a space in between.

A program in table Il demonstrates
the uses of the new facilities. Lines 3 and
4 show the new REM and in this case
they are complete lines on their own.
Remarks may be appended to any
“active” line just preceded by an apost-
rophe. Line 5 shows printed text in an
INPUT line. The input variable X is
against the ” to save r/w.m. space but
again, spacing is not critical. In line 7,
two spaces are left between step and 1
without any effect on the interpreting of
the line. Note that the expression in
parenthesis is spaced exactly as in a
LET statement Line 9 demonstrates the
compounding of two LET type state-
ments (with the LET omitted) by the use
of an exclamation mark. The statement
following ! is typed immediately after
the !, again to conserve r/w.m. space.
Line 11 is “If K is a whole number and if
Zis also a whole number, then print half
of K plus A to two decimal figures and
then half of the positive difference bet-
ween K and A”. This line illustrates the
need for a space between the variable
and the greater than, equals or less than
sign. A space is required because, under
the original interpreter, this had to be a
variable but it can now be a variable,
number or function in parenthesis and
therefore has to be distinguishable. A
closing parenthesis has no other
meaning and does not need the space,
ie IF (XSINI —)=Q print....

The text following an IF comparison
can be any other permitted statement
including another IF as shown in the
example program. Therefore, the old
form IF X=0THEN I25 willbe IF X =0
GO 125. It might seem that the freedom
to place statements end to end on the
same line will reduce all programs to
one line in length (note that a line is not
determined by the length of a v.d.u. line
and may consist of any number of cha-
racters). However, this is not so because
whenever a statement has to be entered
as the result of a jump, or it initiates a
specific jump, the statement must either
start or end a program line respectively.
This means that the first instruction in a
FOR loop must be at the beginning of a
line because further through the execu-
tion a NEXT will try to jump back to it.
Similarly, the statement after the com-
plete IF term must be on a new line
because IF is basically “perform the
operation specified after the conditional
test if the latter is true or jump to the
next line”.

By similar reasoning, GOSUB and GO
should be at the end of lines, as should
RETURN and END. The lines to which
GOSUB and GO refer should start with
the statement to which the jump was
directed.

While encoding the new functions by
algorithm, several clashes occurred
with already assigned codes and this
provided an opportunity to re-encode
the two log. functions into a more
standard format, ie. CLG for a com-
mon log and LOG for log. to the base e,
The radian to degree conversions havJ

Table 10. Disassembled subroutines.
P4aD9 EX

45

also been changed by dropping the first
letter, i.e. TD for a conversion to de-
grees and TR for one to radians,

The author is offering a set of three p.r.o.ms
programmed with the new monitor firmware
for £30. Alternatively, existing p.r.o.ms can
be reprogrammed for £6.50 (both plus 35p
post and packing). 5 The Close, Radlett,
Hertfordshire.

B47C LD A.CHLY AF AF' @s1D INC HL
Ga7Dd 14C L 24DA LD A.20 @51E LD A, CHL)
047 LD C.OF 24DC CP (HL) @S1F CcP 2¢
fa3c CP 22 24DD JPIZ 83 Z4E2 @521 JRZ FA 251D
€432 J™T FS ga7C @4DF EX AF AF' @523 CP 1B
9434 CP 19 34E2 JR 2E @51¢ 8525 RET C
Ca86 JNC 51 34D9 @4E2 DEC HL @526 CP 8D
0488 CcP 3¢ 24E3 CALL @715 #5286 JRZ @3 £S2D
C4SA JTIC 17 24A2 game CP 2@ @s2a CP 2A
@4a3C CP 29 @4EE JPNC @2 Q4EC #52C RET “IC
G4SE J7IT 83 €493 O4EA ADD 22 @s2p CcP 22
@498 CP (HL) C4EC CP 5@ @52F JANZ OA 0538
9491 JRC @C C49F C4EE JRC €2 @aF2 2531 IVC HL
9493 ADD @D 2AF@ SUS 1@ 2532 LD A,CHL)
2495 AID A 24F2 ADD B4 2533 CP 22
249¢ JP PE@4ID ear4 PUSH BC 2535 JRZ Eé 251D
2499 97 @9 @4Fs LD C.A 3537 LD (DS).A
2493 AJD FB 24F€ LD B.e7 29538 IYC DE
249D 7ST 1 C4F8 LD A,(BC) P539 JR Fe 9531
@a?= Tm=ET g4F9 PNP BC 532 CcP 29
C49F LL C.2C B4FA CP @B 053D JmNI B3 8542
24Aa1 LD A, (HL) GAFC JP C €Be0 ¢53F 149C SP
B4aA2 1'C HL @4FF CP 8@ 2548 1IC SP
24A2 EY AF AF' 2581 JRC 05 £s5es 0541 TBET
aAn4 P'ISH DE @563 EX AF AF' @542 CP 28 .
34AS FEY DELHL 8564 LD A,20 2544 JXIT 08 2S4E
24A€ LD HL,1E30 2566 RST | 254€ CALL 051D
24A% LD 3.,0F 2567 EX AF AF' @549 CALL @47C
04A3 CALL B5AC 8568 AYD 3F 854C J3 F3 9S4€
C4AE LD L.09 259A RST 1 @SA4E PUSH AF
€43 LD (HL).C €508 RET @54F LD A,C1FEL)
2421 LD 1,00 353C ° DEC DE €552 CP 232
@4B3 EX AF AF' 258D E! DE.HL 8554 JRZ 15 BSEB
2434 AUD QF 3585 POP DE @556 CP 2C
Q43e CP @F @56F XNR A @S58 JRNZ € BS6Q
P4BS JRIZ @2 BABC 8s1@ PUSH HL 055A LD A, CIFED)
P4BA LD A.CA 8511 CALL @7AC @S5D CALL @4EDd
@43C LD (HL).A 2514 LD B,1e 2568 POP AF
43D LD A,(DE) 8516 LD AsCHL) 25€1 1vNC SP
@4aBE INC HL €517 INC HL @s€é2 I1IC SP
243F 110 DF £518 RST 1 @s€3 cp 2l
04Ce CP 28 8519 DJYZ FB @5l¢ 8565 JP 2 0993
@4C2 JRNC F@ 8434 251B POP HL @568 JP 297F
Paca CP 2@ @s1C RET P5€B LD A,FF
@4aCe JRZ 44 €58C €S6D LD (DE),A
04ac8 LD L.2A @S€E LD E.3¢
24CA LD (HL),@E 257¢ LD A,(DE)
24CC INC HL @s71 CP FF
@4CD LD A,(DE) 0572 JnZ @8 57D
@4CE INT DE 8575 AYD 3F
84CF CP 2D @577 CALL @2DI
eaDl JRNZ El gaBa 857A 14C DE
24aD3 LD (HL),EC 0578 JR F3 @057¢
£4DS 14C HL 857D POP AF
eaDe " LD AsCHL) @57E PAP DE
94D7 JR D3 @434 357F PP DE

@580 JR El 2563
Table 11. Demonstration programs.
€03 'THIS PROGRAM, PUBLISHED IV PART 4, TOOC 19 LIIES BEFORE. J0Wess

@25 PRINT "THIS PROGRAM USES WEWTOYS METHOD FOR SOLVING"

@87 1JPUT "F = F(X). EYTER AJ IVITIAL VALUE IOV "G !ERASE
289 X=Q 159SUB 25

211 G=F'!X=X 1.CEe01 * 1GNSUB 25

€13 TOP !IF (G ABS)<2.0€@eel PRINT “SOLUTION ="C& !END
@15 2=1 F G 7/ | - REC ©.8€081 * - Q * IPRINT @3 !GO 9

@25 F=X L96 X 3 = + 18.3€74 -

227 RETURY

2D78

223 'THIS PROGRAM COMPUTES PAIRS OF JUMBERS WHICH, WHEV

@04 'SQUARED AMD SYUBTRACTED.

GIVE THE INPUT YUMBER

2es INPUT "IVPUT VUMBER IV QUESTION "X

ge7 FOR A=l
ee9 X=X A /

STEP |
1Z= A = 2 / ABS

€11 IF X =CX INT) IF Z =(2
213 YEXT A 1G9 S
2D2¢

INTIL ¢ ROOT 1 +)

INT) PRINT (K A + 2 /7)2 ({ A -2/ ABS)

