Planning techniques find
optimal routes

Although robotics and artificial intelligence can be treated as two entirely separate disciplines,
there is a good deal of interaction between them. Mark Witkowski looks at the impact of artificial
intelligence techniques on robotics.

THERE ARE many possible reasons for
applying artificial intelligence techniques
to robotics. One is to gain a better under-
standing of the essential nature of intelli-
gence — why some computations seem
clever and worthy of further investigation
and others do not, even though they
appear more complicated.

Another is to discover new ways of
manipulating data which are easier and
more natural to write, which increase the
efficiency or the applicability of an
algorithm to a particular problem.
Artificial intelligence has always been
something of an assortment of ideas
about perception, problem solving,
abstraction, generalisation, skilled action,
description, language, learning and
memory and so on.

The tendency is to investigate those
areas in isolation, even though the crudest
definition of intelligence would indicate
that it is not only the possession of these
faculties but their interaction which is of
significance.

At the moment, no robot possesses all
those faculties but there are a handful
which each demonstrate at least one or
two to a significant extent.

Fortunately, it is not necessary for a
robot to be very intelligent for it to tell us
something useful about robot control.
The ideas generated in research will slowly
find their way to the shop floor and
industrial robotics. It is, after all, easier to
find a specific solution to a problem once
a method of finding solutions in that area
is understood.

Construction

Edinburgh University’s Freddy system
was programmed to construct small
wooden toys from their component parts
— Ambler et al. (1975) and Barrow and
Crawford (1972). Were it not for the fact
that this system could start from a
situation in which the parts were tipped in
a heap on the workbench before assembly
commenced, the problem would have
been relatively easy.

Furthermore, the algorithm was suffic-
iently robust to allow the initial pile to
contain parts for more than one model of
the same or different types, and totally
extraneous parts which had to be
identified and discarded.

Freddy was a five-degree-of-freedom
manipulator in which the gripper could be
lowered and raised on a gantry, rotated
and closed. X and Y translation of the

90

objects was achieved by moving the work-
bench. A small vice was fitted to the
bench into which objects could be
clamped during assembly.

Sensing was provided in the form of
proprioceptive co-ordinate feedback, two
television cameras, one looking obliquely
at the table, the other directly downwards.
The gripper was fitted with tactile and
force sensing.

The complete assembly process was not
totally autonomous — the operator was

C'SETOP)

Show cameras all stable states
of all pieces, and name them

Instruct manipulator how to grip
each part and placeitin a
standard position

Write POP-2 code to construct
model from parts in standard
positions, using the vice and
tactile information.

(type “runtask”)

Figure |. Operator actions.

required to do several things before the
robot could be left to assemble models
from piles of parts. The automatic part of
the program proceeded in two stages.

In the first, parts were isolated from the
piles, identified and laid-out in standard
locations. This kit of parts would then be
assembled using hand-coded routines.

The user had to do three separate pro-
gramming or teaching operations before
the robot was ready to go — figure 1.
First, each part of each of the models had
to be shown to the system in each of its
stable states — the ways it would come to
rest if dropped on the table.

That might be repeated several times so

that the program could build-up an
internal description or representation of
the part so that it could be recognised and
identified later using only incoming visual
sensory data.

Next, the user had to instruct the robot,
using a keypad, how to pick-up, rotate
and finally deposit in a standard position
for assembly each of the parts used in the
models. The user had to write some POP-
2 code to take the parts from their
standard positions and construct the
model using the vice to clamp the pieces
and tactile sensing to do any close inser-
tion assembly.

POP-2 is the Edinburgh artificial intelli-
gence programming language and not a
specific assembly language like WAVE or
AL — Burstall, Collins and Popplestone
(1971).

Figure 2 shows the automatic part of
Freddy’s operation — a loop which can be
cycléd forever, Each time, the most useful
operation which can be done in complet-
ing the model is executed first. So if every-
thing is complete, the program finishes 1.

Standard

If all the parts required for the model
are in their standard positions, the model
is assembled, using the pre-defined code,
2. If this was not the case, the cameras are
used to explore the table-top. A potential
item is a bright region on the dark back-
ground — 3.

Once a bright region is located, it must
be visually analysed. It will either be a
useful item, a piece of the model still
needed for the process to continue, in
which case it is moved to its standard
position — 4.

It could be part of the model but one
which duplicates a part already in its
standard position, and it must be put to
one side — 5.

If there are no regions that can be ident-
ified as useful items, the robot sets about
the smallest region as a heap — 6. The
tactic used is to divide the heap into its
individual pieces so they may be ident-
ified. The first strategy is to locate visually
a protusion from the side of the heap and
attempt to pick it up and place it in a clear
area for identification.

If for some reason this fails for all the
visible protusions, a second tactic is then
employed to separate the heap.

The gripper is lowered on to the heap
until it touches, thereby defining its
height. Then an attempt is made to grab at

PRACTICAL COMPUTING June 1980

Robotics ——

the heap, first halfway up and then, if that
fails to isolate a single item, at the base.

In the case of a particularly entangled
heap, a final attempt is made by plough-
ing the hand through its centre just above
table level. That procedure is not entirely
desirable as it causes significant disruption
of the work-table lay-out. If the heap is
still unrecognisable, it might as well be
disposed of — 8.

" That portion of Freddy’s algorithm is
characterised by a number of very useful
ideas. First of all, extensive use is made of
both visual and tactile feedback and there
are many error recovery modes. Every-
thing is checked periodically to make sure
it has not moved and that the computer’s
internal description of the world matches
the sensory data — 7.

Most of all, it is very persistent due to
the structure of the main control loop —
figure 2 — and will work away at objects
and heaps until they succumb.

There are also checks to ensure that the
proposed action is still applicable. For
instance, just before smashing a heap, it
checks that the heap is not really a recog-
nisable object which slipped-through. The
assembly routines are not as robust. It is
the user’s responsibility to include such
checks as he or she feels appropriate, and
if those tests are not made, the assembly
may fail in an unexpected way.

Obviously the tactic actions of the lay-
out algorithms are related closely to the
types of item they manipulate. The vision
routines depend on the objects being
lighter in colour than the background,
and the objects must be grippable by the
hand.

Sensors monitor continually for the

unexpected and error recovery was
included at many levels. However, there
was very little planning involved, actions
being made in response to some immed-
iate need. Problem solving and planning is
an area where artificial intelligence can
really help robotics.

Maze running

Of particular interest to anyone who
may be entering the micromouse maze-
running competition is the question posed
by the exploration and learning of a maze.

The classic method of traversing a maze
from some entrance to an exit is to keep
touching either the left- or the right-hand
wall until the exit is found. That would
work for the maze shown in figure 3. You
may note, however, that following the
right-hand wall leads to the exit a good
deal sooner than following the left.

It is, of course, entirely arbitary as to
which handedness is to be more efficient.
Without knowing something further
about the maze, there is no way of telling.

There is, in fact, a particularly nasty
catch to the follow-the-wall algorithm —
it works only if both start and finish are
on an infinite face, that they are joined by
a continuous wall.

There is no problem with figure 3 as
they are both on the outside wall. Unfort-

PRACTICAL COMPUTING June 1980

unately, the micromouse competition
rules clearly state that the finish will be in
the centre of the maze, and so there can be
no assumption that the algorithm will
terminate.

It is also pointless to take turnings at
random, since this would give very slow
progress through the maze. It would be
worse to change walls at arbitary times. A
systematic search of the maze is required.
This will not help much for a single timed
run but will be very valuable if the maze
runner has a second chance.

Tarry’s algorithm is useful — Berge
(1962). It states that one should never go
in the same direction twice along any one
edge, nor take the edge from a junction by
which one arrived unless no other choice
is available. Figure 4 shows the maze in

Figure 2. Lay-out algorithm.

figure 3, depicted in the form of a graph.

Each square in the maze at which a
decision can be made is represented by
one of the lettered notes, A to N, dead-
ends are shown by ‘X’. Arcs joining the
nodes show the distance between
junctions.

Clearly, with a graph like this, one
could explore the maze and choose an
optimum route without moving at all. By
looking at either the ground plan or the
graph, any particular route can be invest-
igated. Following the right-hand wall
leads to the exit via:

START(1), A(1), B(1), Xb(1) dead-end so back

to B(5), D(3), H(3), M(2), N(2), back to

N(5) and then EXIT, for a total of 26 moves.
Following the left-hand wall is altogether

MR continued on next page)

“runtask”

®_'(exit '

is assembly yes
task complete?

are all parts yes
of model tidy?

search needed yes
for more parts?

useful parts yes

untidy?
extra useful yes

parts needed?

©)

assemble
mode! >

explore

put away into
standard positions

discard objects -

smash a heap ol
search for 1
missing part =

put heaps in
corner

9l

fcontinued from previous page)

START(1), A(3), C(4), F(3), X{(3), F(1), I(1),
I(1y, K(2), Xkl(2), K(3), Xkr(3), K(1), J(3),
L(3), XI(3), L(3), E(2), G(3), H(3), M(2),
Xm(2), M(2), N(5), EXIT, for a total of 64
moves with six dead-ends visited.

The best strategy is to travel through
each tunnel and visit each junction in
turn, but re-tracing one’s steps as little as
possible and remembering the internode
distance. That must be methodical and
some variant of Tarry's algorithm could
well be used.

The mouse must first have some way of
remembering each of the junctions,
probably as an X-Y co-ordinate and then
start exploring the maze. As an example,
one might turn left unless that tunnel had
already been mapped. So from the start
there is no choice but to visit A, and the
left-most exit goes to C, and thence to F.

F’s left-most exit leads to the dead-end
Xf, there is no choice but to turn back to
F. The current left-most exit from F leads
to I, which visits Xi and then J, which
visits K, Xkl and Xkr, showing that the
node K is itself a dead-end.

Back to J, L and Xl, to E, G, H, M,
Xm and back to M, left to N and left
again to the EXIT. As our purpose is to
explore the maze, not leave it, the exit is
treated as a dead-end and we turn back to
M, Xn and M. H, D, B, Xb back to B and
titen A, which takes us back to the start.

With the graph safely in computer
store, it is possible to plan a route to the
exit in the least possible moves, START,
A, B, D, H, M, N and EXIT, a total of
20. A complete exploration of the maze
takes 132 moves, on the 14 x 14 ft. maze
there is about 700 feet of track, and some-
what more than 600 possible nodes, each
with a maximum of four exits, assuming
no diagonals.

Exploration

To explore the maze in 10 minutes, the
mouse’s speed would have to be in excess
of 14 in. per second. Open spaces should
be traversed as they could represent a
considerable shortcut.

The graph representation is particularly
useful in this case as it is suited ideally to
list processing languages, — Foster (1967)
— such as Lisp, which is available on at
least three microprocessors, the 6800 —
Van der Wateren (1978) — the 6502 —
Gardner (1979) and the Z-80
(Softwarechouse).

A further advantage is that artificial
intelligence has given rise to a great many
algorithms for searching graph structures
of this form to find an optimal path
through them.

They can be elegant, quick, efficient,
exhaustive or heuristicly-driven, accord-
ing to taste — Nilsson (1971). Each
algorithm is favoured in subtle ways by
the exact design of the maze.

So with luck and a turbo-charged
mouse — in the final analysis there is little
substitute for well-directed brute force —
a winner will actually reach the exit. Also

92

see Allen and Allen (1979) and Stanfield
(1979).

Maze running is a special case of a more
general navigational problem that is
solved by planning techniques. A mobile
robot must operate in the passages and
spaces between obstacles without hitting
them. Even if the vehicle has an accurate
picture of its own position, either by dead-
reckoning or some navigational aid, and
that of the obstacles it has to avoid, it
must still plan a route from its current
position to its destination.

In a warehouse, algorithms akin to

. ‘"@“_ o3
- - O O~ o
d

v
5,@?3 o

Figure 3. A maze.

those used for the maze may suffice with
the vehicle running in the middle of the
passageway. Any obstacle detected by its
sensors would cause the vehicle to plan a
new route round it. Presumably, when
two such vehicles meet, being too stupid
to go round one another, they would-both
turn, plan a new route and, doubtless,
meet somewhere else.

Figure 5 shows an open-plan robot
environment, bounded by walls but con-
taining a few — five in this case, Ato E —
square obstacles. The problem is to plan a
route from the start position, at the
bottom, to the goal position at the top,
avoiding all the obstacles, but obeying
some shortest path criterion.

Normally, that would be the shortest
total distance but in a robot suffering
navigational error while turning, the
straightest path may be preferable. If
computer time was at a premium the first
path found, of the several possible, may
be chosen or the best path found after a
fixed number of seconds.

Assuming that the positions of the
objects are known, there are a number of
algorithms for planning a route through
the robot’s environment. Clearly, a good
deal of geometry is going to be involved,
and hence a good deal of computation.

Any technique which keeps this at a
minimum will be welcome. The map could
be stored as a topological, graphical repre-
sentation, perhaps in a two-dimensional
array. Each element in the array would
correspond directly to a co-ordinate in
real space.

For large areas, particularly if there are
orily a few objects, that will be very

cumbersome. Saving only the corner
points of the objects would be far more
efficient. In planning a minimal route it is
desirable to pass by the objects as closely
as possible to avoid travelling excess
distance.

Computation can be further reduced by
treating the robot as a point and by
expanding each of the objects it must
avoid by an amount equivalent to the
radius of a circle which just surrounds the
robot.

The result of this expansion is shown in
figure 5. Clearly, if a point can navigate
round those obstacles, the robot can move
around the originals.

The next stage is to build a graph of all
the points visible from the current
position, and then all the points visible
from those new places, and so on. A
corner is visible from the current_position
if a line can be drawn to it without cross-
ing any line which represents the face of
an object, i.e., 1.3-1.4.

That could be rather time-consuming
even though the routine to test if one line
crosses another is minimal. Time could be
saved by noting that a good deal of the
robot world is invisible from any point as
it is occluded by other obstacles. Figure 6
shows such a graph.

There is no need to join nodes at the
same depth, 1.n or 2.n and so on, since it
is pointless going somewhere in two stages
when it is possible to arrive there by a
straight line. Each of the arcs shows the
length of the line between the two points
in question. The underlined number
beside each node is the distance which has
been travelled to reach it.

Deeper nodes

Where two routes pass through the
same point, only the shorter is used to
compute distances to the deeper nodes.
Eventually, the goal point is reached, or
there are no more nodes to expand as the
goal was unobtainable anyway.

The distance and route to be taken is
now obtained easily from the graph.
Searching the graph can proceed in a
number of ways. First a breadth search, in
which all the first-level nodes are
expanded, 1.n, followed by all the second-
level nodes, 2.n, then successively deeper
nodes.

Searching in this way, the goal node to
be found first is 1.6 — 2.4 — Goal, 179.
The search would have to proceed to the
fifth level to obtain the best route. When
there are a large number of nodes, richly
interconnected, the search space can
become massive in a combination of
explosion. However, the combinatorial
explosion does not sound the death knell
of artificial intelligence problem solvers.

The perfect search strategy is to know
some heuristic measure which indicates
the most advantageous arc of the many
possible. Heuristics are often referred to
as rules-of-thumb, extra knowledge or
understanding about the problem
domain.

PRACTICAL COMPUTING June 1980

A perfect heuristic would lead to a total
depth first search, in which one particular
successor to a node, rather than its neigh-
bours, is expanded. That would lead
directly to the goal.

In reality, a heuristic measure only
indicates which of the nodes it might be
best to explore. If the search leads to a
terminal node, dead-end or one known
not to be useful, the search must back-up
to a previous node and follow another
promising series of arcs.

Possible heuristic measures for search-
ing figure 6 might include expanding the
node which has the shortest route back to
the start point, or expanding arcs that
represent directions that most directly
point to the goal position.

Using the co-ordinates of the points,
the optimal path START — 1.3 — 2.2 —
3.2 — 4.1 — GOAL can be converted into
a LOGO program, which could drive a
turtle:

TO GOTOGOAL
10 RIGHT 39

20 FORWARD 41
30 LEFT 41

40 FORWARD 36
S0 LEFT 70

60 FORWARD 27
70 RIGHT 24

80 FORWARD 36
90 LEFT 15

100 FORWARD 22
110 END

The more general case where the objects
to be circumnavigated are not squares but
arbitrarily-shaped is nothing like as
straightforward. This simple edge expan-
sion is not optimal. In fact, the robot
could have squeezed between blocks A
and B of figure 5 and if the block had
been rounded at the corners to the robot’s
radius, the solution path would have been
totally different. Further details of these
algorithms may be found in Lozano-Pérez
and Wesley (1979).

Planning and problem solving can be

(turn 39 degrees right)
(zo 41 units forward)

Figure 4. Graphic representation of maze in figure 3.

used in generating higher-level, more des-
criptive plans than those purely for navig-
ation or maze-running. The Shakey robot
project at the Stanford Research Institute
(SRI) used a problem solver (STRIPS —
Stanford Research Institute Problem
Solver) to tackle chain of action tasks —
Fikes and Nilsson (1971).

Figure 7 shows a typical Shakey
environment. A suite of rooms connected
by doors to an adjoining corridor contains
the robot and a selection of boxes.

The robot can make actions within this
world by applying any one of a number of
different operators, such as ‘goto’,
‘pushto’ or ‘gothrudoor’. Whenever there
is more than one possible operator,
several difficulties arise during planning
which were not noticeable with the maze
and navigation examples.

Before, only the robot or micromouse
changed position. There were no other
effects and it was assumed that whenever
the robot moved it is no longer where it
was and has arrived at its destination.

Environment

During STRIPS planning, even though
nothing in the real environment is moved,
when it plans to move an object or the
robot, the old information in the database
about that thing must be removed and
replaced with updated information about
its new status.

So each time a new node is added to the
problem graph by planning to apply an
operator, a new version of all the axioms
must be generated. That is the essence of
the frame-problem: every time you plan
an action, the next stage in your plan must
assume the world has been changed as a
consequence of previous actions.

STRIPS deals with that by having a
delete and add list for each of the oper-
ators which can be used. The delete list
specifies which of the current world model

axioms will no longer be true of the world |

if that operator were to be applied; the
add list specifies the axioms which would
have to be added after it was used.

A further complication is that operators
may only be used if certain conditions are
true of the world. The robot may not, for
instance, push a box unless it is already
next to it. Thus the operator:

gotol(m)
in which the robot moves to place ‘m’ has
the pre-condition:
(4x) [INROOM(ROBOT x) A
LOCINROOM(m,x)]
which states that the robot and the pro-
posed new place for it must both be in the
same room. The delete list:
ATROBOT(S), NEXTTO(ROBOT,$)
tells the system that wherever ‘$’ the robot
was, and whatever it was next to, it will no
longer be there after the operator goto(m)
is used. The add list:
ATROBOT(m)
is the new information the model requires;
the robot will be at ‘m’. The operator
goto2(m) moves the robot next to the item
‘m’, which could be, for example, a box
or doorpost. Gothrudoor(k,l,m) causes
the robot to go through door ‘k’ from
room ‘I’ into room ‘m’ and it has the pre-
conditions:
NEXTTO(ROBOT,K)ACONNECTS(k,1,m)A,

INROOM(ROBOT,])

The robot must be beside the door ‘k’;
‘k’ must connect room ‘I’ to rcom ‘m’ and
the robot must be in room ‘I’. The delete
list is:

ATROBOT($), NEXTTO(ROBOT,$),

INROOM(ROBOT,3)
stating that the robot is neither where it
was, next to what it was nor in the same
room as before.

The add list simply states that the robot
is in the new room:

INROOM(ROBOT,m)

A goal for the robot to achieve, a task

or problem to be solved is also couched
(continued on next page)

Figure 5. An open-plan robot environment.

PRACTICAL COMPUTING june 1980

93

Robotics m——

Room 1

Room 2 Room 3 Room 4

of

Door 3 Door 4
4 L 1

Door 2
] L

Room 5

fcontinued from previous page)
in terms of a logic well-formed formula

(wff):
NEXTTO(BOX1,BOX2) ANEXTTO(BOX2,
BOX3)
place box 1 next to box 2 and box 2 next to
box 3. Group all three boxes together.
The problem solver proceeds by trying to
show that the goal wiff follows logically
from the axioms describing the world and
actions by the process of resolution.
Strictly speaking, it does exactly the oppo-
site of that — Nilsson (1971) and Kowalski
(1979).
Almost as a by-product of that proof
the operator list is generated:

goto2(BOX2), pusto(BOX2,BOX1),
20t02(BOX2), pusto(BOX3,BOX2)
or the goal wff:
ATROBOT(f) gives:
goto2(DOORI1), gothrudoor (DOOR1,
ROOM1, ROOMS),
goto2(DOORA4), gothrudoor (DOOR4,
ROOM4,RO0M4),
gotol(f)

The system is clearly far more powerful
than either of the previous ‘planners’.
Interesting environments can be
described, many operators can be used to
plan complex sequences of actions. Even
though not English, the goals can be
requested in a reasonably clear, and very
unambiguous manner.

All is not wonderful, however, as a
great deal of computation goes into gener-
ating a STRIPS plan. The wff format
must be translated into its equivalent
clause form, Nilsson (1971), updating the
frame as a major task, as is the process of
resolution itself.

A heuristic used to guide the problem
search is that of goal difference. An oper-
ator is chosen which is likely to reduce the
differences between the current state of
the world and the required goal state.
Fortunately, this information is provided
almost directly in the form of each oper-
ator’s add list.

In general, it takes considerably longer
to generate even those short plans of
actions than it takes for the robot to
execute them. To overcome that to a cer-

94

Figure 6. Graph of navigation problem posed in ﬁguf'e' 5.

tain extent, the designers added a facility
to store portions of plans made to solve
problems, so that they could be recalled
and used en bloc — Fikes, Hart and
Nilsson (1972a) — and also to generalise
their stored plans so that they would be
applicable as widely as possible.

Furthermore, they looked at the prob-
lems introduced by a second active unit in
the environment, a second robot, which
would change the world without updating
the database axioms of the other — Fikes,
Hart and Nilsson (1972b).

The lower levels of the Shakey system
used a form of route planning similar to
the one described earlier. Hardware
checks, co-ordinate verification and error
recovery, along with many other aspects
are all integral in a project of this nature.
Some idea of the scope of the Shakey
project might be gained from Raphael
(1976) or Raphael et al. (1971).

A number of other robot planning
systems have been devised which do not
involve robots, but simulate their actions
on computer terminals. Among them are
Doran’s pleasure-seeking automaton,
Doran (1968), Fahlman's BUILD system,
Fahlman (1974), in which a simulated arm
would build complex structures of blocks,
requiring considerable planning ability.

It is interesting to note that in saving the
effort of programming a robot arm, 80
percent of the programming effort in the
system went on the simulation of the
environment which included the effects of
gravity and over-balancing. There was no
attempt to model arm trajectories; blocks
just disappeared and re-appeared where
they were wanted.

References

Allan S and Allan § A (1979). Simple maze
traversal algorithms. Byte 4-6, June [979,
pp. 36-46.

Ambler A P, Barrow H G, Brown C M, Burstall
R M and Popplestone (1975). A versatile
system for computer-controlled assembly.
Artificial Intelligence 6-2, Summer 1975, pp.
129-156.

Barrow H G and Crawford G F (1972). The
Mark 1.5 Edinburgh robot facility. Machine
Intelligence 7 pp.465-480. Melizer B and
Michie D (eds.). Edinburgh University
Press. ISBN 0-85224-234-4.

Figure 7. A STRIPS/Shakey world.

Berge G (1962). The theory of graphs. Great
Britain: Methuen & Co.

Burstall R M, Collins J S and Popplestone R J
(1971). Programming in POP-2. The Edin-
burgh University Press. ISBN 0-85224-197-6.

Doran J E (1968) Experiments with the
pleasure-seeking automaton. Machine Intel-
ligence 3 pp. 195-216. Michie D (ed.).
The Edinburgh University Press. Congress
67-13648.

Fahlman S E (1974) A planning system for
robot construction tasks. Artificial Intel-
ligence 5-1, Spring 1974, pp. 1-49.

Fikes R E, Hart P E and Nilsson N J, (1972a),
Learning and executing generalised robot
plans. Artificial Intelligence 3-4, Winter
1972, pp. 251-288.

Fikes R E, Hart P E and Nilsson N J (1972h).
Some new directions in robet problem
solving. Machine Intelligence 7 pp. 405-430.
Meltzer B. and Michie D. (eds.). Edinburgh
University Press. ISBN (0-8§5224-234-4.

Fikes R E and Nilsson N J (1971). STRIPS:
A new approach to the application of theorem
proving to problem solving. Artificial Intel-
ligence 2-3/4, Winter 1971, pp. 189-208.

Foster J M (1967). List processing. London/
New York: Macdonald/Elsevier Computer
Monographs. SBN 356-02225-0.

Gardner M (1979). The thinking computers
language. Practical Computing 2-10, October
1979, pp. 82-84.

Kowalski R (1979). Logic for problem solving.
New York: North Holland, Computer Science
library, artificial intelligence series (Nilsson
N Jfed.)). ISBN 0-444-00365-7.

Lozano-Pérez T and Wesley M A (1979). An
algorithm for planning collision-free paths
among polyhedral obstacles, Communic-
ations of the ACM 22-10 (October 1979)
pp. 560-570.

Nilsson N J (1971). Problem solving methods
for artificial intelligence. New York:
McGraw-Hill Book Co., Computer science
series. Congress: 74-136181.

Raphael B (1976). The thinking compuler.
San Francisco: W H Freeman & Co. ISBN
0-7167-0733-3.

Raphael B, Chaitian L J, Duda R O, Fikes
R E, Hart P E and Nilsson N J (1971).
Research and applications — artificial intel-
ligence. Semi-annual progress report 7/10/70
to 31/3/71 prepared for NASA, office of
advanced research and technology research
division.

Stanfield D E (1979). My computer runs mazes.
Byte 4-6 (June 1979) pp. 86-99.

Van der Wateren F (1978). Lisp 1.5 program-
mers’ manual. Software documentation.

Van der Wateren F — Lisp for the M6800 in:
Dr Dobb’s Journal of Computer Calisthenics
and Orthodontia No. 28 pp. 24-25,

Winograd (1972). Understanding natural lang-
uage. Edinburgh University Press ISBM (-
85224-227-1.

PRACTICAL COMPUTING June 1980

	robotics5_1.bmp
	robotics5_2.bmp
	robotics5_3.bmp
	robotics5_4.bmp
	robotics5_5.bmp

