WIRELESS WORLD. MARCH 1978

77

Microcomputer design — 5

Introduction to microcomputer programming

by Phil Pittman B.Sc in association with NASCO Ltd

A microcomputer is capable of storing
information, controlling other devices,
performing calculations, making
decisions based on the results and
completing a given task very rapidly. The
processor cannot, however, perform
these tasks without direction. Each step
which the computer is to perform must
first be worked out by the programmer

Put 1st.no.in
temporary store

v

Compare 2nd. no
with
temporary store

Is
2nd. no.
larger

Y
Put 2nd. no.in
temporary store

Compare 3rd. no,
with contents of
temporary store

Is
3rd. no.
larger
?

Put 3rd. no. in
temporary store

Transfer largest
no. to memory

As explained in previous articles a pro-
gramme is a list of instructions for the
computer to follow in order to execute a
given task. When a complex task has to
be performed the programme may in-
volve many steps, and writing it often
becomes long and confusing. A method
for solving a problem which is written in
words, and possibly mathematical
equations, is extremely difficult to fol-
low, and compiling computer instruc-
tions from such a document would be
equally difficult.

A technique called “flowcharting” is
used to simplify the writing of pro-
grammes. A flowchart is a graphical
representation of a given problem, indi-
cating the logical sequence of opera-
tions that the computer is to perform.
Having a diagram of the logical flow of a
programme is a tremendous advantage
to the programmer when he is deter-
mining the method to be used for
solving a problem, as well as when
writing the coded programme instruc-
tions. In addition, the flowchart is often
a valuable aid when the programme

Fig. 1. This flowchart is a preliminary
to writing a programme for selecting
the largest of three numbers. The
programme itself is shown in Fig. 5.

Fig. 2. Common symbols used in
flowcharts.

checks the written programme for
errors.

Fig. 1 is a flowchart which shows the
sequence of operations for a pro-
gramme which selects the largest of
three numbers. The assumption is that
the numbers are stored in consecutive
memory locations and that the selected
largest number is to be stored in the
fourth consecutive location. To help
with Fig. 1, Fig. 2 shows some common
symbols used in drawing flowcharts.
The rectangle represents an operation
to be performed within the programme.
The diamond shape is used to indicate a
decision point where one of two or more
paths is selected by the programme.
There are other symbols for various
other functions, but those shown are
the most frequently used ones.

The flowchart of Fig. 1 clearly illust-
rates the method for selecting the larg-
est of three numbers. Essentially, ad-
jacent numbers are compared and the
larger at each comparison is saved and
used as one of the numbers for the next
comparison. At the end of the sequence
of comparisons the last “saved" value
will be the largest from the group. By
repeating the process the method may
be extended to any number of values.
For more complex problems the initial
flowchart may not give as much detail
about the operation of the programme
as is shown in Fig. 1. For example, the
task of selecting the largest of a group
of numbers may be only a small part of a
much larger item of software. Conse-

Represents the start, the end, or an interruption of
the programme depending on the word contained

in the box.

Represents a given task accomplished by the pro-
gramme, the description of the task being briefly

indicated inside the rectangle.

-

Indicates that a test must be made to determine the
subsequent path taken by the programme. The test
is specified within the diamond and its results
marked above the appropriate output paths.

Represents one or several operations which are
not detailed on the flowchart in question but are
detailed on another flowchart. A sub-programme
is often represented in this way.

78

quently, on a different flowchart this
complete operation may be represented
by a single box, as indicated in Fig. 3.

The very first flowchart for the
operation of a microcomputer project
may contain very little detail of the
actual method by which the central
processing unit will solve the problem.
However, each block must then be
broken down into smaller and smaller
operations, probably resulting in
several “levels” of flowchart, depending
on the complexity of the problem, being
generated along the way. Finally, as
with the Fig. 1 example, the flowcharts
will contain sufficient detail to be
translated directly to machine instruc-
tions. By adopting this method of
generating various levels of flowcharts,
a more orderly solution to the software
problem will result.

Programming models and
instruction types

Flowcharts are generally “machine in-
dependent” in that identical flowcharts
can be used as a basis for generating
programmes for virtually any com-
puter. However, in order to translate a
flowchart into a programme for a parti-
cular machine, the programmer must be
completely familiar with the instruction
set of the c.p.u. (see December 1977
issue, p.56 and p.59) and know which
registers within the c.p.u. are accessible
by these instructions.

Fig. 4 shows what is called the pro-
gramming model or internal register
organization of the Z80 microprocessor
chip. Before proceeding with a pro-
gramming example it is necessary to
study these aspects of the c.p.u. Note
that some of the registers are duplicated
in the Z80 and are referred to as the
main and alternate registers sets.
Within the Z80 there is a means for
selecting one or other set for current
‘working. The current discussion will be

i
]

Select largest
of N numbers

'

|
v

Fig. 3. Example of a flowchart referring
to a sub-programme.

limited to considering the main set only,
plus some of the other special-purpose
registers. Each register has a particular
significance in the overall operation of
the c.p.u.

There is a register known as the
accumulator. This 8-bit register, which
is denoted by the letter A, is always used
for one of the operands in any 8-bit
arithmetic or logical operation, and as
such is a very special and important
register of the c.p.u. For example, if two

Fig. 4. Diagram showing the
organization of the internal registers of
the Z80 microprocessof, known as a
“programming model”.

Main register set Alternate register set
' A Al A)
Accumulator Flags Accumulator Flags
A F A F'
B C B’ c’
, , General
D E D E purpose
registers
I '
H L H L
Interrupt vector Memory refresh
I R
Index register [X
Special
Index register IY purpose
registers
Stack pointer SP
Programme counter PC
J

WIRELESS WORLD, MARCH 1978

8-bit numbers are added, subtracted,
compared, etc., one of them must reside
in the accumulator and this is also
where the result of the operation is left.
Registers called B, C, D, E, H, L are
general purpose 8-bit registers which
may be used as stores in a similar way to
any external memory locations. How-
ever, being part of the c.p.u. means that
they may be accessed faster and more
easily than external memory. In addi-
tion to being general purpose stores,
registers Band C,D and E,and Hand L
may be used in pairs to form 16-bit
registers for many types of arithmetic
operations. Also, these 16-bit registers
may be used to hold memory addresses
for certain memory reference opera-
tions. This is particularly true of the H
and L pair, which may be used to con-
tain an address for many register-to-
memory and memory-to-register data
transfers, arithmetic and logical opera-
tions.

Register F in Fig. 4 is not really a
register in the normal sense but is the
collection of ¢.p.u. status bits which are
affected by the a.l.u. operations and
which may be tested by the conditional
jump instructions.

Registers IX and 1Y are 16-bit reg-
isters used primarily for holding
memory addresses for special “indexed”
addressing operations. Arithmetic
operations may also be performed,
using these registers.

The SP or “stack pointer” register is
another special purpose address register
whose function will be explained in a
later article. Register PC is the 16-bit
programme counter which keeps track
-of the current instruction address in the
programme memory.

Registers | and R have special func-
tions which will also be explained in a
later article.

Instructions which operate on data
within the above registers or memory
locations may be classified into various
groups. Any computer will have similar
instruction groups, although the actual
instructions within these groups are
likely to differ between different designs
of c.p.u.

The instruction set of the Z80 consists
of 158 different instructions, which may
be broken down into the following
major groups.

Load and exchange
Block transfer and search
Arithmetic and logical
Shift and rotate

Bit manipulation

Jump, call and return
Input/output

Basic c¢.p.u. control

The load instructions move data in-
ternally between c.p.u. registers or bet-
ween c.p.u. registers and external
memory. All of these instructions must
specify a source location from which
the data is to be moved and a destina-
tion location. The exchange instruc-
tions can swap the contents of certain
c.p.u. registers.

WIRELESS WORLD, MARCH 1978

A unique set of block transfer in-
structions is provided in the Z80. With a
single instruction a block of memory
data of any size can be moved to any
other area of memory. These instruc-
tions are extremely valuable when large
strings of data must be processed. The
block search instructions are also valu-
able for this type of processing. With a
single instruction a block of external
memory of any desired length can be
searched for any 8-bit character. When
the character is found, the instruction
automatically terminates.

The arithmetic and logical instruc-
tions operate on data stored in the
accumulator and other general purpose
c.p.u registers or memory locations. The
results of the operations are placed in
the accumulator and the appropriate
flags are set according to the result of
the operation. This group also includes
various 16-bit arithmetic facilities.

The shift and rotate instructions
allow data in the accumulator or other
8-bit registers to be shifted or rotated in
various ways, often including the carry
flag as a ninth bit.

Bit manipulation instructions allow
any bit in the accumulator, any general
purpose register or any external
memory location to be set, reset or
tested with a single instruction. This
group is especially useful in control
applications and for controlling “soft-
ware flags” in general purpose pro-
gramming.

The jump, call and return instructions
are used to transfer information bet-
ween various locations in the user’s
programme. This group uses several
different techniques for obtaining the
new programme counter address from
specific external memory locations.
Programme jumps may also be
achieved by loading the contents of
registers H and L, IX or 1Y directly into
the programme counter, thus allowing
the jump address to be a complex func-
tion of the programme being executed.

The input/output group of instruc-
tions allow for a wide range of transfers
between external memory locations or
the general purpose c.p.u. registers and
the external i/ o devices.

Finally, the basic c.p.u. control in-
structions allow various options and
modes including instructions for effec-
ting the interrupt response.

Coding the programme

With the instruction set at his disposal,
the programmer can begin to translate
the detailed flowcharts into actual
machine instructions. In the case of the
“selection of largest number’ pro-
gramme, the flowchart of Fig. 1 is suf-
ficiently detailed to give approximately
a one-to-one correspondence between a
flowchart block and a c.p.u. instruction.
This will not always be true as problems
get more complex and as the program-
mer becomes more proficient and con-
fident. In Fig. 5 the flowchart has been
translated into a list of programme
instructions.

Address pointer

<+ H L

Memory image

1st. no.

2nd. no.

3rd. no

Result

1. Load HL with address of 1st number
Load A from memory (addressed by HL)

Increment HL

]

Compare A with memory contents
(addressed by HL)

o

. rJump if no carry

6.| Load A from memory

7. Yincrement HL

8. Compare A with memory contents
9. rJump if no carry

10| Load A from memory

11 Plncrement HL
12. Load memory from A
13. HALT

Fig. 5. Actual programme to select the
largest of three numbers.

Notice that in order to address the
sequential data memory locations it is
convenient to use the 16-bit pair of
registers H and L of the c.p.u. This is set
up at the start of the programme (line 1
in Fig. 5) to contain the memory address
of the first number in the data list.
Consequently, as the other numbers
have to be accessed the HL address
pointer, as it is called, may be advanced
by one each time with a suitable in-
struction (lines 3, 7 and 11 in Fig. 5). An
alternative method would be to include
the absolute address of each number as
part of a suitable instruction at the
relevant parts of the programme. How-
ever, in this case it would have resulted
in a more inflexible programme and
would require additional memory loca-
tions for the 16-bit address values to be
stored in the programme.

The temporary store referred to in the
flowchart has been chosen to be the
accumulator register of the c.p.u. This is

79

because in order to compare two
numbers, one of them has to reside in
this register. Therefore, unnecessary
data movements can be avoided if this is
used as the temporary store in this case.

Once the data address is set in the HL
register, there are instructions available
for loading the accumulator from
memory address by HL (line 2) and vice
versa (line 12). Also, other operations
such as “compare A with memory"” use
the contents of HL as a memory address
(line 4 and 8). Remember that the com-
pare instructions work in a similar way
to a subtraction, in that if the memory
content is larger than the accumulator
content then a carry (or borrow) will be
generated, thereby setting the carry
flag. The “'jump if no carry” instructions
will test this flag and decide whether the
accumulator contains the larger value
or whether it needs to be loaded into the
accumulator from the currently ad-
dressed memory location. Conse-
quently, before the execution of the
instruction at line 7 or line 11, the accu-
mulator will contain the largest value so
far.

Instruction mnemonics
Programmes are rarely written as
shown in Fig. 5 since it becomes very
tedious to write out all the instructions
in this form. The c.p.u. instructions are
commonly abbreviated as shown in
Table 1. Mnemonics are used for the
various types of instruction, e.g. load —
LD, compare — CP, jump — JP, incre-
ment — INC, etc. Also, the operands for
the instructions are specified by suitable
abbreviations for the storage locations
in which they are held, for example A,
HL, (HL).

These mnemonics are collectively
known as the programming language.
In particular they are the assembly
language of the Z80 c.p.u. Some com-
puter systems have an ‘“‘assembler”
which is a special programme for
automatically translating the assembly
language mnemonics into binary
machine code.

Note that the parenthesis in the case
of (HL) means that the operand is not
actually the contents of the HL register
but the contents of memory “addressed
by"” the contents of HL. Note also that

Table 1 — Mnemonic coded programme with comments

Instruction
1 LD HL, 0900
2 LD A, (HL)

3 INC HL

4 CP (HL)

5 JP NC, LINE 7
6

7

8

9

Line No.

LD A, (HL)
INC HL
CP (ML)
JP NC, LINE 11
10 LD A, (HL)
11 INC HL
12 LD (HL). A
13 HALT

Comment
Set data address in HL
Get 1st data byte into accumulator
Update address pointer
Compare 2nd data with 1st
Test carry flag
Carry, so put larger in accumulator
Update address pointer
Compare 3rd data with accumulator
Test carry
Put larger in accumulator
Update pointer
Store largest in memory
Halt c.p.u. at end of programme

Table 2 — Machine coded programme listing

Line No. Address Machine Instruction mnemonic
1 0800 210009 LD HL, 0900H
2 0803 7E LD A, (HL)

3 0804 23 INC HL

4 08B0S BE CP (HL)

5 0806 D2 0A0B JP NC, LINE 7
6 0809 7E LD A, (HL)

7 080A 23 INC HL

8 080B BE CP {HL)

9 0socC D21008 JP NC, LINE 11

10 080F 7E LD A, (HL)

1 0810 23 INC HL
12 o811 77 LD (HL), A
13 0812 76 HALT

for the jump instructions the addresses
of the instructions at lines 7 and 11
would, in practice, need to be inserted as
part of the jump instruction.

In order to make the programme
more readable it is good practice to
include comments as shown in Table 1,
indicating how the programme opera-
tions relate to the task in hand.

Finally, before the programme can be
entered into the computer's memory the
instructions must be converted into the
appropriate binary codes. This is done
by referring to the c.p.u.’s instruction
set details. At this stage it is also
necessary to allocate memory addresses
both for the programme and also for
any data which must reside in memory.

The r.a.m. of the microcomputer kit
(November 1977 issue, p. 45) starts at
address 800 (hex), this being the begin-
ning of the third 1K address block (De-
cember 1977 issue, Fig. 4). Consequently
this would be a suitable address at
which to store the programme. Four
data memory locations are also required
and so addresses 900 to 903 (hex) could
arbitrarily be chosen for these.

We are now in a position to generate
the machine code programme. Table 2
shows the resulting programme, indi-
cating the relevant memory addresses
for the instructions. Note that the
hexadecimal number system has been
used throughout. Where an instruction
requires more than one memory loca-
tion all the bytes of information have
been shown on one line and the memory
address of the next line is adjusted
accordingly. The Z80 c¢.p.u. requires that
whenever a 16-bit address is specified as
part of an instruction, the least
significant byte must be placed first in
the memory, followed by the most
significant byte.

Initially it is not possible to fill in the
jump addresses at lines 5 and 9 until the
memory addresses of the jump destina-
tions (lines 7 and 11) have been estab-
lished. So, on the first pass through,
memory locations must be reserved for
these values. Having established the
memory locations required, one can
then fill in the remaining memory
references. For example, the jump in-
struction at line 5 must contain the

address of line 7. Consequently the
value 080A must reside in memory
locations 0807 and 0808.

Running the programme

The following paragraphs illustrate
how the above programme may be
verified by running it on the microcom-
puter kit. A typical operational
sequence is given, starting with the
entry of the programme into the com-
puter’'s memory, continuing with
executing and verifying, and finally
making a permanent record of the pro-
gramme on cassette tape. In the discus-
sion which follows the display listing
produced by the kit is given. Those parts
shown in bold characters are those
which are typed by the user. The
remainder is generated by the system.
The reader should refer to Part 2 of this
series (December 1977 issue) for a de-
scription of the system commands.

The first step is to type the pro-
gramme into the memory using the M
command. Each byte of machine code is
entered starting from address 800. The
M command responds with the current
memory contents. The user must then
type a space followed by the new value
required. A carriage return then gives
the contents of the next memory loca-
tion on a new line and so on as shown
below.

o M B00

0800 00 21
0801 00 00
0802 00 09
0803 00 7E
0804 00 23
0805 00 BE
0806 00 D2
0807 00 0A
0808 00 08
0809 00 7E
080A 00 23
080B 00 BE-
080C 00 D2
080D 00 10
080E 00 08
080F 00 7E
0810 00 23
0811 00 77
0812 00 76.

WIRELESS WORLD, MARCH 1978

The programme memory may be
checked by using the “tabulate” com-
mand:

« T 800 812

0800 21 00 09 7E 23 BE D2 0A
0808 08 7E 23 BE D2 10 08 7E
0810 23 77 76

Three data values must be entered in
addresses 900-902. These can be any
convenient 8-bit numbers and may be
entered with the M command:

e M9
0900 00 12
0901 00 34

0902 00 OBe

Everything is now ready for the pro-
gramme to be run. However, it is rarely
advisable to try to run the whole of a
new programme without any interven-
tion by the operator at any point since
even the simplest programme is likely to
coatain errors initially. It is therefore
desirable to set a breakpoint at a con-
venient place, after a few instructions
will have been executed. A suitable
peint is at line 7 (address 080A). A
breakpoint here will cause the pro-
gramme to stop before the INC HL
instruction is executed. At his stage of
the programme the accumulator should
contain the larger of the first two
numbers..The following print-out shows
the setting of the breakpoint, the start
of programme execution and the dis-
play of programme counter and accu-
mulator contents when the breakpoint
is reached.

e BS0A
+ E800
080A 34

See that the programme has stopped
with the programme counter at address
80A as specified by the breakpoint in-
struction. This confirms that at least
some of the programme has indeed been
executed. The accumulator appears to
have the value 34 which is the larger of
the first two numbers. However, in
order to check that the programme
branches correctly it should be tried
again with numbers of different relative
magnitudes.

To check the next part of the pro-
gramme a breakpoint could be set at
address 812, This will ensure that the
final c.p.u. register states will be pre-

.served for examination if required. The

following sequence sets the new break-
point, continues programme execution
from the previous breakpoint, and dis-
plays the final programme counter and
accumulator contents.

«B8I12

o E

08012 34

o Continued on page 88

88
Continued from page 80

The accumulator contains the value
34, which suggests that the programme
is working correctly since this was the
largest of the three numbers.

To finally verify the correct opera-
tion, memory address 903 should be
examined.

o M 903
0903 34 e

If for any reason the programme had
required changing, this could be
accomplished with the “modify"” com-
mand again. For example, if we wish to
select the smallest rather than the larg-
est of the numbers, this can be achieved
by changing the “jump if no carry”
instruction to a “jump if carry.” This
involves changing the JP NC,... (op
code D2) to JRC, ... (op code DA), e.g.

o M 806

0806 D2 DA e
e M 80C
080CD2DAs "

The programme could now be
executed again in a similar manner to
that shown above.

Finally, to keep a permanent record of
the programme it can be saved on tape
by the “dump” command. This also
produces a display of the saved infor-
mation.

e D 800 812

0800 21 00 09 7E 23 BE DA 0A
0808 08 7E 23 BE DA 10 08 7E
0810 23 77 76

Ata later time the programme may be
quickly re-loaded into the memory with
the “load” command.

oL

These examples have illustrated some
of the fundamental principles and
implications of writing programmes for
a microcomputer or any other computer
system. However, much more detail
than can be given here is required in
order to get a greater appreciation of
the programming facilities offered by
the c.p.u. and the techniques for ex-
ploiting these facilities. Future articles
will go some way to explain these very
important aspects of microprocessor
system design.

Reference
The Z80 c.p.u. Technical Manual O

Owing to production difficulties the
remainder of Dr Shelton's articles on micro-
computer hardware have had to be post-
poned, but will be resumed as soon as pos-
sible.

WIRELESS WORLD, MARCH 1978

All Finniston’s persons

THE first meeting of the committee of inquiry
into the engineering profession, chaired by
Sir Monty Finniston, took place on De-
cember 20 at Great Smith Street, London.
The names of its members, announced a few
days before, were: Catherine Avent, careers
guidance ILEA; W. Buckley, Warrington
technical college; T. Crispin, T & GWU; H.
Darnell, British Steel; J. Dawes, ex-Rolls
Royce; J. Dickinson, North Staffs polytech-
nic; J. Horlock, Salford University; W. Howie,
New Civil Engineer; B. Lindley, ERA: H.
Macdonald Smith, Army; W. McCall, In-
stitution of Professional Civil Servants; J.
Menter, London University; H. Nelson, Ran-
some Hoffman Pollard; J. Powell, EMI; E.
Sadler, Ove Arup Partnership; D. Weir, Scot-
tish Business School; J. Wilson, Tayside
Region.

The secretary to the committee is Mr M. V.
Boxall, who will accept submissions at Abell
House, John Islip Street, London SW1.

Dr Powell's career has led him to the
Clarendon Laboratories, Oxford University,
Ottowa's National Research Laboratory,
Marconi, where he worked on semiconduc-
tors, and Texas Instruments, where he
moved from engineering to management. He
joined EMI in 1974.

An article in the journal of the Institution
of Production Engineers points out that,
surprisingly, none of their members is
represented on the committee. “Apparently
eschewing the talents of MIProdEs, the
committee includes seven educationalists, a
magazine publisher, a civil servant, a trade
unionist and four industrialists.” The list
does, indeed, have the look of a fairly typical
selection from the Book of the Great and the
Good, and one would have thought the civil
service is going to have quite enough in-
fluence on the committee’s work without
putting one of its members on the committee
as well. []

Defence research spawns commercial success

THE 1977 MACROBERT award has gone to a team
of five who developed a device, the Malvern
correlator, which uses lasers to measure flow
rates. The range of applications is said to
extend from the flow of blood through the
blood vessels at the back of the eye, the only
non-invasive method of doing this, to the rate
of flow of gases through an engine.

Four of the winners come from the Physics
group of the Royal Signals and Research
Establishment, Malvern, and the fourth is the
managing director of the firm which pro-
duced a commercial version of the device,
Malvern Instruments Ltd.

The instigator of the project was Dr Roy
‘Pike, one of the RSRE team, who was en-
gaged in a study of the structure of light. In
particular, they wanted to study laser light.
The laser had only just been invented and
few uses had been found for it. They reasoned
that once they understood the nature of what
came out of the laser it might be put to
practical, probably defence, use.

They began to concentrate on the meas-
urement of the characteristics of laser pho-
tons. The flow measurement technique stems
from that. A laser beam is split into two
beams, which converge in the centre of the
flow. The optical fringes formed by the
interference of the two beams, when
observed at the other side of the flow, are
disturbed by the flow particles. This disturb-
ance, or scattering, is caused by the photon
pulses bunching together as the particles
move through a light area of the optical
fringes. The intensity distribution of the
fringes therefore gives a guide to the particle
velocity. The periodicity of the pulse train is
measured by auto-correlation technique —
multiplying the pulse train by many time-
delayed versions of itself.

One of the team, Mr D. S. Trudgill, left
RSRE in 1971 and with help from the NRDC,
set about making a commercial version of the
equipment. The firm of which he is now
managing director, Malvern, started selling
them in 1972 and last year won a Queen's
Award. The firm has 35 employees compared
with the six it had when it began. They have
sold over 200 Malvern correlators.

The MacRobert award is the most pre-
stigious in UK engineering. It is worth
£25,000 and a day at Buckingham Palace,

where Prince Philip presented the awards at
a private ceremony just before Christmas.
The chairman of the CEI, which sponsors
it, Sir Charles Pringle, reminded those who
gathered after the presentation that no
award had been made last year for lack of
entries of a high enough standard. This year,
however, there had been a number which
would have been eligible, and the problem
this year had been one of selection. Perhaps
the absence of an award last year had given
the MacRobert prize a shot in the arm. [

IN BRIEF

Marconi are to supply tv signal montitoring
equipment for the studios broadcasting the
1980 Moscow Olympic Games

Ferranti have bought linear i.c. makers
Interdesign of California.

EMI have a new company, EMI Industrial
Electronics, to co-ordinate the £50 million
worth of business they conduct in that area.

Voice of America have installed a short wave
dipole curtain aerial array at their Delano,
California, relay station. The aerial operates at
250 to 500kW with 100% modulation on
49m, 40m and 31m. It was supplied by TCI.
Satisfactory signals have been received in the
F’hiiippines.

The Ministry of Defence have bought 400
u.h.f. radio relays from Marconi, nearly four
years after a £7.6 million order for the
equipment. The present order, for Triffid
transportable equipment, is worth £12 million
Triffid is a modification of a design by
Siemens and AEG for the Netherlands, and
will work in the Ptarmigan network (WW Sept
77. page 49).

A contract to install 470,000 new lines to the
Saudi Arabian automatic telephone system has
been won by the Philips / Ericsson / Bell
Canada consortium. The project will take three
years. Philips and Bell will install the
equipment, worth $2 million, and Bell will
maintain it for five years.

